Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134490757> ?p ?o ?g. }
- W3134490757 endingPage "108060" @default.
- W3134490757 startingPage "108060" @default.
- W3134490757 abstract "Low-rank methods have earned high regard for solving problems of mixed denoising in hyperspectral images (HSI). However, for low-rank matrix/tensor-based denoising methods, high computational complexity and high tuning difficulty often accompany good results. To address this challenge, in this paper, we propose a tensor subspace low-rank learning method with a non-local prior to exploit the low-rankness of both spatial and spectral modes of an HSI tensor. Technically, the original noisy HSI tensor was first projected to a low-dimensional subspace. Then, an orthogonal tensor basis of subspace and a tensor coefficient were alternatively learned. The parameter-free non-local prior was enforced in the tensor subspace instead of in the original HSI tensor. Eventually, the t-linear representation of basis and coefficient tensors achieved the restoration of the latent clean low-rank tensor. The proposed method realizes complete tensor operations for subspace low-rank learning and avoids the correlation loss bought about by tensor flattening. Through comparing with the latest denoising methods by using several quantitative and qualitative indexes, extensive experiments conducted on two simulated and two real datasets have proved that the proposed method not only realizes the high accuracy of mixed denoising, but also remarkably improves the computational efficiency and usability in real applications." @default.
- W3134490757 created "2021-03-15" @default.
- W3134490757 creator A5006226649 @default.
- W3134490757 creator A5006247366 @default.
- W3134490757 creator A5053709863 @default.
- W3134490757 creator A5059068224 @default.
- W3134490757 creator A5074587654 @default.
- W3134490757 creator A5087119507 @default.
- W3134490757 date "2021-07-01" @default.
- W3134490757 modified "2023-10-18" @default.
- W3134490757 title "TSLRLN: Tensor subspace low-rank learning with non-local prior for hyperspectral image mixed denoising" @default.
- W3134490757 cites W1944540851 @default.
- W3134490757 cites W1992426838 @default.
- W3134490757 cites W1994040806 @default.
- W3134490757 cites W1997201895 @default.
- W3134490757 cites W2043571470 @default.
- W3134490757 cites W2053842903 @default.
- W3134490757 cites W2070424424 @default.
- W3134490757 cites W2080843093 @default.
- W3134490757 cites W2145962650 @default.
- W3134490757 cites W2171125155 @default.
- W3134490757 cites W2412588858 @default.
- W3134490757 cites W2430546716 @default.
- W3134490757 cites W2436131245 @default.
- W3134490757 cites W2480706550 @default.
- W3134490757 cites W2516176725 @default.
- W3134490757 cites W2761818166 @default.
- W3134490757 cites W2773266593 @default.
- W3134490757 cites W2790346082 @default.
- W3134490757 cites W2790888198 @default.
- W3134490757 cites W2793237446 @default.
- W3134490757 cites W2805465265 @default.
- W3134490757 cites W2806155925 @default.
- W3134490757 cites W2897149264 @default.
- W3134490757 cites W2903268675 @default.
- W3134490757 cites W2908833896 @default.
- W3134490757 cites W2919868964 @default.
- W3134490757 cites W2945202593 @default.
- W3134490757 cites W2947104191 @default.
- W3134490757 cites W2954868192 @default.
- W3134490757 cites W2963664109 @default.
- W3134490757 cites W2963885538 @default.
- W3134490757 cites W2964179170 @default.
- W3134490757 cites W2972301798 @default.
- W3134490757 cites W2972555443 @default.
- W3134490757 cites W2979001238 @default.
- W3134490757 cites W2980054274 @default.
- W3134490757 cites W2989184171 @default.
- W3134490757 cites W2991209609 @default.
- W3134490757 cites W2996291386 @default.
- W3134490757 cites W2997195386 @default.
- W3134490757 cites W3012136461 @default.
- W3134490757 cites W3012548728 @default.
- W3134490757 cites W3045351696 @default.
- W3134490757 cites W3048825625 @default.
- W3134490757 cites W3090929676 @default.
- W3134490757 cites W3091030342 @default.
- W3134490757 cites W3093115209 @default.
- W3134490757 cites W3148151826 @default.
- W3134490757 doi "https://doi.org/10.1016/j.sigpro.2021.108060" @default.
- W3134490757 hasPublicationYear "2021" @default.
- W3134490757 type Work @default.
- W3134490757 sameAs 3134490757 @default.
- W3134490757 citedByCount "42" @default.
- W3134490757 countsByYear W31344907572021 @default.
- W3134490757 countsByYear W31344907572022 @default.
- W3134490757 countsByYear W31344907572023 @default.
- W3134490757 crossrefType "journal-article" @default.
- W3134490757 hasAuthorship W3134490757A5006226649 @default.
- W3134490757 hasAuthorship W3134490757A5006247366 @default.
- W3134490757 hasAuthorship W3134490757A5053709863 @default.
- W3134490757 hasAuthorship W3134490757A5059068224 @default.
- W3134490757 hasAuthorship W3134490757A5074587654 @default.
- W3134490757 hasAuthorship W3134490757A5087119507 @default.
- W3134490757 hasConcept C106487976 @default.
- W3134490757 hasConcept C11413529 @default.
- W3134490757 hasConcept C114614502 @default.
- W3134490757 hasConcept C12426560 @default.
- W3134490757 hasConcept C153180895 @default.
- W3134490757 hasConcept C154945302 @default.
- W3134490757 hasConcept C155281189 @default.
- W3134490757 hasConcept C159078339 @default.
- W3134490757 hasConcept C159985019 @default.
- W3134490757 hasConcept C163294075 @default.
- W3134490757 hasConcept C164226766 @default.
- W3134490757 hasConcept C192562407 @default.
- W3134490757 hasConcept C2524010 @default.
- W3134490757 hasConcept C32834561 @default.
- W3134490757 hasConcept C33923547 @default.
- W3134490757 hasConcept C41008148 @default.
- W3134490757 hasConceptScore W3134490757C106487976 @default.
- W3134490757 hasConceptScore W3134490757C11413529 @default.
- W3134490757 hasConceptScore W3134490757C114614502 @default.
- W3134490757 hasConceptScore W3134490757C12426560 @default.
- W3134490757 hasConceptScore W3134490757C153180895 @default.
- W3134490757 hasConceptScore W3134490757C154945302 @default.
- W3134490757 hasConceptScore W3134490757C155281189 @default.
- W3134490757 hasConceptScore W3134490757C159078339 @default.