Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134493562> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3134493562 endingPage "543" @default.
- W3134493562 startingPage "541" @default.
- W3134493562 abstract "MicroRNAs (miRNAs) are one of the most important regulators of gene expression. Their biogenesis starts with the transcription of primary miRNA transcripts (pri-miRNAs). In plants, the RNase III enzyme DICER-LIKER 1 (DCL1), together with its partner, the double-stranded RNA-binding protein HYPONASTIC LEAVES 1 (HYL1), and the zinc-finger protein SERRATE (SE), process the imperfect miRNA-residing stem loop of pri-miRNAs to release the miRNA/miRNA∗ duplexes in the nucleus, which are then methylated by HUA1 ENHANCER 1 (Rogers and Chen, 2013Rogers K. Chen X. Biogenesis, turnover, and mode of action of plant microRNAs.Plant Cell. 2013; 25: 2383-2399Crossref PubMed Scopus (568) Google Scholar; Song et al., 2019Song X.W. Li Y. Cao X.F. Qi Y.J. MicroRNAs and their regulatory roles in plant-environment interactions.Annu. Rev. Plant Biol. 2019; 70: 489-525Crossref PubMed Scopus (197) Google Scholar). Then, most miRNAs are sorted into AGONAUTE 1 to mediate mRNA-cleavage or translation inhibition based on sequence complementarity (Rogers and Chen, 2013Rogers K. Chen X. Biogenesis, turnover, and mode of action of plant microRNAs.Plant Cell. 2013; 25: 2383-2399Crossref PubMed Scopus (568) Google Scholar; Song et al., 2019Song X.W. Li Y. Cao X.F. Qi Y.J. MicroRNAs and their regulatory roles in plant-environment interactions.Annu. Rev. Plant Biol. 2019; 70: 489-525Crossref PubMed Scopus (197) Google Scholar). Studies have shown that miRNA biogenesis is controlled through modulating pri-miRNA transcription, stability and processing, which is often coupled with various developmental and environmental signals. In a recent study, Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar found that forkhead-associated domain 2 (FHA2) negatively regulates miRNA biogenesis. It interacts with DCL1 to repress pri-miRNA processing. Remarkably, FHA2 is stabilized by light and modulates light-triggered changes in pri-miRNA processing during de-etiolation, suggesting that FHA2 links light signal to miRNA biogenesis (Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar). The FHA domain spanning ~80-100 amino acid (aa) residues is a conserved motif that specifically recognizes phosphothreonine-containing motifs (Chevalier et al., 2009Chevalier D. Morris E.R. Walker J.C. 14-3-3 and FHA domains mediate phosphoprotein interactions.Annu. Rev. Plant Biol. 2009; 60: 67-91Crossref PubMed Scopus (115) Google Scholar). The FHA domain exists in diversified proteins that act in various cellular processes including signal transduction, DNA transport, protein degradation and others. The FHA domain-containing DAWDLE (DDL) protein from Arabidopsis is a positive regulator of miRNA biogenesis. It interacts with DCL1 through its C-terminal FHA domain, which recognizes the helicase and RNase III domains of DCL1 and promotes DCL1 activity (Figure 1A) (Yu et al., 2008Yu B. Bi L. Zheng B. Ji L. Chevalier D. Agarwal M. Ramachandran V. Li W. Lagrange T. Walker J.C. et al.The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis.Proc. Natl. Acad. Sci. U S A. 2008; 105: 10073-10078Crossref PubMed Scopus (220) Google Scholar; Machida and Yuan, 2013Machida S. Yuan Y.A. Crystal structure of Arabidopsis thaliana dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for dicer-like 1 binding.Mol. Plant. 2013; 6: 1290-1300Abstract Full Text Full Text PDF PubMed Scopus (28) Google Scholar; Zhang et al., 2018Zhang S.X. Dou Y.C. Li S.J. Ren G.D. Chevalier D. Zhang C. Yu B. DAWDLE interacts with DICER-LIKE proteins to mediate small RNA biogenesis.Plant Physiol. 2018; 177: 1142-1151Crossref PubMed Scopus (12) Google Scholar). These two protein domains of DCL1 contain potential phosphothreonine motifs recognized by the FHA domain (Machida and Yuan, 2013Machida S. Yuan Y.A. Crystal structure of Arabidopsis thaliana dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for dicer-like 1 binding.Mol. Plant. 2013; 6: 1290-1300Abstract Full Text Full Text PDF PubMed Scopus (28) Google Scholar), indicating that phosphorylation may control the DDL-DCL1 interaction and modulate miRNA biogenesis. Notably, DDL also binds and stabilizes pri-miRNAs. FHA2 is another FHA domain-containing protein sharing very low sequence similarity with DDL. It harbors an N-terminal FHA domain and an acidic aa-enriched C-terminal region (Figure 1A). The loss-of-function fha2 mutants display male sterility and slightly enlarged leaves with mild serration (Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar). Most miRNAs are increased in abundance in fha2 relative to wild-type plants, suggesting that FHA2 negatively regulates miRNA biogenesis (Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar). FHA2 directly interacts with HYL1 and DCL1, but not SE. In addition, FHA2 co-elutes with HYL1, DCL1, and SE in a size-exclusion chromatography analysis, demonstrating that FHA2 is associated with the DCL1 complex (Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar). Moreover, FHA2 recognizes the PAZ domain and RBD of DCL (Figure 1A) (Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar). However, it is unknown if the FHA domain mediates the DCL1-FHA2 interaction. Notably, the DCL1 complex from fha2 displays increased pri-miRNA processing activity relative to wild type, which can be repressed by the addition of the recombinant FHA2 protein, demonstrating that FHA2 inhibits the DCL1 activity (Figure 1B) (Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar). Supporting this notion, fha2 reduces pri-miRNA accumulation. To investigate how FHA2 represses the DCL1 activity, Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar examined the impact of FHA2 on the interaction of the recombinant DCL1-PRR (PAZ-RNase III-RBD) with pri-miRNAs. The results show that FHA2 represses the pri-miRNA-DCL1-PRR interaction, showing that FHA may inhibit DCL1 activity through preventing its access to pri-miRNAs (Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar). Intriguingly, FHA2 also stimulates the HYL1-pri-miRNA interaction (Figure 2B), which seems to be contradictory to its negative role in miRNA biogenesis (Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar). Perhaps, FHA2 has at least two non-mutually exclusive roles in miRNA biogenesis. On the one hand, it may facilitate HYL1 to compete with other double-stranded RNA-binding proteins for pri-miRNAbinding, and thereby ensure HYL1 function. On the other hand, it represses DCL1 activity, which is a rate limiting step for miRNA biogenesis. The balance of these two roles of FHA2 may ensure proper miRNA biogenesis. FHA2 negatively modulates DCL1 activity whereas DDL has an opposite effect, revealing that FHA-containing proteins have a multifaceted role in miRNA biogenesis. Their different impacts on pri-miRNA processing are likely due to that they recognize different protein domains of DCL1. Arabidopsis encodes 19 FHA-containing proteins. It will be interesting to test the function of other FHA domain-containing proteins in miRNA pathway. Several studies suggest that light modulates miRNA biogenesis by affecting the stability of proteins essential for pri-miRNA processing (Song et al., 2019Song X.W. Li Y. Cao X.F. Qi Y.J. MicroRNAs and their regulatory roles in plant-environment interactions.Annu. Rev. Plant Biol. 2019; 70: 489-525Crossref PubMed Scopus (197) Google Scholar). For instance, the stability of HYL1 under light depends on CONSTITUTIVE PHOTOMORPHOGENIC 1 E3 ligase, a crucial regulator of the light signaling pathway (Cho et al., 2014Cho S.K. Ben Chaabane S. Shah P. Poulsen C.P. Yang S.W. COP1 E3 ligase protects HYL1 to retain microRNA biogenesis.Nat. Commun. 2014; 5: 5867Crossref PubMed Scopus (65) Google Scholar). Consistent with this observation, prolonged darkness causes degradation of HYL1. Notably, during prolonged darkness, a small portion of HYL1 is phosphorylated, retained and stabilized in the nucleus as an inactive form (Achkar et al., 2018Achkar N.P. Cho S.K. Poulsen C. Arce A.L. Re D.A. Giudicatti A.J. Karayekov E. Ryu M.Y. Choi S.W. Harholt J. et al.A quick HYL1-dependent reactivation of microRNA production is required for a proper developmental response after extended periods of light deprivation.Dev. Cell. 2018; 46: 236-247Abstract Full Text Full Text PDF PubMed Scopus (26) Google Scholar). Upon expose to light, phosphorylated HYL1 is quickly dephosphorylated and reactivated (Achkar et al., 2018Achkar N.P. Cho S.K. Poulsen C. Arce A.L. Re D.A. Giudicatti A.J. Karayekov E. Ryu M.Y. Choi S.W. Harholt J. et al.A quick HYL1-dependent reactivation of microRNA production is required for a proper developmental response after extended periods of light deprivation.Dev. Cell. 2018; 46: 236-247Abstract Full Text Full Text PDF PubMed Scopus (26) Google Scholar). Interestingly, miRNA biogenesis also subjects to regulation during de-etiolation (Choi et al., 2020Choi S.W. Ryu M.Y. Viczian A. Jung H.J. Kim G.M. Arce A.L. Achkar N.P. Manavella P. Dolde U. Wenkel S. et al.Light triggers the miRNA-biogenetic inconsistency for de-etiolated seedling survivability in Arabidopsis thaliana.Mol. Plant. 2020; 13: 431-445Abstract Full Text Full Text PDF PubMed Scopus (13) Google Scholar). During de-etiolation, the protein levels of DCL1 and HYL1 are elevated caused by light-dependent stabilization (Choi et al., 2020Choi S.W. Ryu M.Y. Viczian A. Jung H.J. Kim G.M. Arce A.L. Achkar N.P. Manavella P. Dolde U. Wenkel S. et al.Light triggers the miRNA-biogenetic inconsistency for de-etiolated seedling survivability in Arabidopsis thaliana.Mol. Plant. 2020; 13: 431-445Abstract Full Text Full Text PDF PubMed Scopus (13) Google Scholar). However, most miRNAs do not show changes in abundance in de-etiolated plants relative to etiolated ones, accompanied with increased levels of pri-miRNAs (Figure 1B) (Choi et al., 2020Choi S.W. Ryu M.Y. Viczian A. Jung H.J. Kim G.M. Arce A.L. Achkar N.P. Manavella P. Dolde U. Wenkel S. et al.Light triggers the miRNA-biogenetic inconsistency for de-etiolated seedling survivability in Arabidopsis thaliana.Mol. Plant. 2020; 13: 431-445Abstract Full Text Full Text PDF PubMed Scopus (13) Google Scholar). This result suggests that light may also inhibit pri-miRNA processing (Figure 1B). Indeed, the DCL1 complex from light-exposed plants displays a reduced activity relative to that from plant in the dark (Choi et al., 2020Choi S.W. Ryu M.Y. Viczian A. Jung H.J. Kim G.M. Arce A.L. Achkar N.P. Manavella P. Dolde U. Wenkel S. et al.Light triggers the miRNA-biogenetic inconsistency for de-etiolated seedling survivability in Arabidopsis thaliana.Mol. Plant. 2020; 13: 431-445Abstract Full Text Full Text PDF PubMed Scopus (13) Google Scholar). The reduced DCL1 activity can be restored by overexpression of the PAZ domain of DCL1 (Choi et al., 2020Choi S.W. Ryu M.Y. Viczian A. Jung H.J. Kim G.M. Arce A.L. Achkar N.P. Manavella P. Dolde U. Wenkel S. et al.Light triggers the miRNA-biogenetic inconsistency for de-etiolated seedling survivability in Arabidopsis thaliana.Mol. Plant. 2020; 13: 431-445Abstract Full Text Full Text PDF PubMed Scopus (13) Google Scholar). These results show that light may trigger a negative regulator of DCL1, which can be decoyed by the PAZ domain of DCL1 (Choi et al., 2020Choi S.W. Ryu M.Y. Viczian A. Jung H.J. Kim G.M. Arce A.L. Achkar N.P. Manavella P. Dolde U. Wenkel S. et al.Light triggers the miRNA-biogenetic inconsistency for de-etiolated seedling survivability in Arabidopsis thaliana.Mol. Plant. 2020; 13: 431-445Abstract Full Text Full Text PDF PubMed Scopus (13) Google Scholar), and raise the need to look for the light-triggered suppressor of DCL1. Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar found that the protein levels of FHA2 are increased in light without changes in transcript levels. In addition, FHA2 protein levels are increased in dark under the presence of MG132, a proteasome inhibitor, suggesting that FHA2 is stabilized by light (Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar). These results together with facts that FHA2 interacts with the PAZ domain and inhibits DCL1 activity demonstrate that FHA2 is the light-triggered suppressor of DCL1 (Figure 1B) (Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar). Further supporting this notion, miRNA levels in fha2 are similar to those in the transgenic plants overexpressing the PAZ domain of DCL1 (Park et al., 2021Park S.J. Choi S.W. Kim G.M. Møler C. Pai H.S. Yang S.W. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.Mol. Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.020Abstract Full Text Full Text PDF Scopus (5) Google Scholar). In summary, the study of FHA2 not only reveals multiple roles of the FHA domain-containing proteins in miRNA biogenesis, but also explains how miRNA biogenesis is balanced between dark and light during de-etiolation. In the light, the levels of both DCL1 and its suppressor FHA2 are elevated due to increased protein stability under light (Figure 1B). In turn, miRNAs are not produced according to the amounts DCL1. In contrast, both DCL1 and FHA2 are reduced in abundance in dark so that considerable amounts of DCL1 activity still exist (Figure 1B). Thus, through synchronizing the stability of DCL1 and FHA2 under light or dark, plants balance the production of miRNAs. Clearly, how light and dark modulate the stability of DCL1 and FHA2 requires further investigation." @default.
- W3134493562 created "2021-03-15" @default.
- W3134493562 creator A5012208123 @default.
- W3134493562 creator A5083820224 @default.
- W3134493562 date "2021-04-01" @default.
- W3134493562 modified "2023-09-27" @default.
- W3134493562 title "Forkhead-associated domain 2 links light signal to miRNA biogenesis" @default.
- W3134493562 cites W2042325491 @default.
- W3134493562 cites W2047024411 @default.
- W3134493562 cites W2072017031 @default.
- W3134493562 cites W2079595991 @default.
- W3134493562 cites W2162914947 @default.
- W3134493562 cites W2804379509 @default.
- W3134493562 cites W2884781992 @default.
- W3134493562 cites W2921275324 @default.
- W3134493562 cites W2982386339 @default.
- W3134493562 cites W3126542171 @default.
- W3134493562 doi "https://doi.org/10.1016/j.molp.2021.02.009" @default.
- W3134493562 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8278648" @default.
- W3134493562 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33647479" @default.
- W3134493562 hasPublicationYear "2021" @default.
- W3134493562 type Work @default.
- W3134493562 sameAs 3134493562 @default.
- W3134493562 citedByCount "1" @default.
- W3134493562 countsByYear W31344935622022 @default.
- W3134493562 crossrefType "journal-article" @default.
- W3134493562 hasAuthorship W3134493562A5012208123 @default.
- W3134493562 hasAuthorship W3134493562A5083820224 @default.
- W3134493562 hasBestOaLocation W31344935621 @default.
- W3134493562 hasConcept C104317684 @default.
- W3134493562 hasConcept C131934819 @default.
- W3134493562 hasConcept C134306372 @default.
- W3134493562 hasConcept C145059251 @default.
- W3134493562 hasConcept C199360897 @default.
- W3134493562 hasConcept C2779843651 @default.
- W3134493562 hasConcept C33923547 @default.
- W3134493562 hasConcept C36503486 @default.
- W3134493562 hasConcept C41008148 @default.
- W3134493562 hasConcept C54355233 @default.
- W3134493562 hasConcept C70721500 @default.
- W3134493562 hasConcept C86803240 @default.
- W3134493562 hasConcept C95444343 @default.
- W3134493562 hasConceptScore W3134493562C104317684 @default.
- W3134493562 hasConceptScore W3134493562C131934819 @default.
- W3134493562 hasConceptScore W3134493562C134306372 @default.
- W3134493562 hasConceptScore W3134493562C145059251 @default.
- W3134493562 hasConceptScore W3134493562C199360897 @default.
- W3134493562 hasConceptScore W3134493562C2779843651 @default.
- W3134493562 hasConceptScore W3134493562C33923547 @default.
- W3134493562 hasConceptScore W3134493562C36503486 @default.
- W3134493562 hasConceptScore W3134493562C41008148 @default.
- W3134493562 hasConceptScore W3134493562C54355233 @default.
- W3134493562 hasConceptScore W3134493562C70721500 @default.
- W3134493562 hasConceptScore W3134493562C86803240 @default.
- W3134493562 hasConceptScore W3134493562C95444343 @default.
- W3134493562 hasFunder F4320332161 @default.
- W3134493562 hasFunder F4320337397 @default.
- W3134493562 hasIssue "4" @default.
- W3134493562 hasLocation W31344935621 @default.
- W3134493562 hasLocation W31344935622 @default.
- W3134493562 hasLocation W31344935623 @default.
- W3134493562 hasOpenAccess W3134493562 @default.
- W3134493562 hasPrimaryLocation W31344935621 @default.
- W3134493562 hasRelatedWork W1847732026 @default.
- W3134493562 hasRelatedWork W2012907323 @default.
- W3134493562 hasRelatedWork W2402240171 @default.
- W3134493562 hasRelatedWork W2811222254 @default.
- W3134493562 hasRelatedWork W2900597665 @default.
- W3134493562 hasRelatedWork W2981527185 @default.
- W3134493562 hasRelatedWork W3005159051 @default.
- W3134493562 hasRelatedWork W3161675530 @default.
- W3134493562 hasRelatedWork W3202023181 @default.
- W3134493562 hasRelatedWork W4315853590 @default.
- W3134493562 hasVolume "14" @default.
- W3134493562 isParatext "false" @default.
- W3134493562 isRetracted "false" @default.
- W3134493562 magId "3134493562" @default.
- W3134493562 workType "article" @default.