Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134498118> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3134498118 abstract "It is well known that exploiting label connections is important for multi-label image recognition. However, many of the existing methods utilize the connections between label pairs, ignoring high-order connections, thus may result in the degradation of recognition performance. A few methods can capture high-order label connections but have high complexity and low scalability. Inspired by the nature of hypergraph coding high-order connections, we propose a Hypergraph induced Graph Convolutional Network (HI-GCN), which can capture high-order label connections with high adaptivity and scalability. Specifically, we first build an adaptive hypergraph on labels in a data-driven manner, which allows the high-order label connections to be exploited adaptively and scalability. Then, by updating label embeddings via using Hypergraph induced Graph Convolutional network (HI-GCN), the label embeddings are mapped to label classifiers with high-order connections. Experimental results on MS-COCO, SUN and ESP datasets validate the effectiveness of our approach." @default.
- W3134498118 created "2021-03-15" @default.
- W3134498118 creator A5046419939 @default.
- W3134498118 creator A5051345533 @default.
- W3134498118 creator A5066009092 @default.
- W3134498118 creator A5068470372 @default.
- W3134498118 date "2020-11-27" @default.
- W3134498118 modified "2023-09-24" @default.
- W3134498118 title "Hypergraph Induced Graph Convolutional Network for Multi-Label Image Recognition" @default.
- W3134498118 cites W1983998816 @default.
- W3134498118 cites W1999954155 @default.
- W3134498118 cites W2005676288 @default.
- W3134498118 cites W2070148066 @default.
- W3134498118 cites W2102037812 @default.
- W3134498118 cites W2118712128 @default.
- W3134498118 cites W2138290126 @default.
- W3134498118 cites W2141282920 @default.
- W3134498118 cites W2166912588 @default.
- W3134498118 cites W2194775991 @default.
- W3134498118 cites W2300423053 @default.
- W3134498118 cites W2462037541 @default.
- W3134498118 cites W2519887557 @default.
- W3134498118 cites W2894990412 @default.
- W3134498118 cites W2932399282 @default.
- W3134498118 cites W2963745697 @default.
- W3134498118 cites W2963875806 @default.
- W3134498118 cites W2964181345 @default.
- W3134498118 cites W2997794817 @default.
- W3134498118 cites W2998420437 @default.
- W3134498118 cites W3122665668 @default.
- W3134498118 doi "https://doi.org/10.1109/itia50152.2020.9312371" @default.
- W3134498118 hasPublicationYear "2020" @default.
- W3134498118 type Work @default.
- W3134498118 sameAs 3134498118 @default.
- W3134498118 citedByCount "0" @default.
- W3134498118 crossrefType "proceedings-article" @default.
- W3134498118 hasAuthorship W3134498118A5046419939 @default.
- W3134498118 hasAuthorship W3134498118A5051345533 @default.
- W3134498118 hasAuthorship W3134498118A5066009092 @default.
- W3134498118 hasAuthorship W3134498118A5068470372 @default.
- W3134498118 hasConcept C118615104 @default.
- W3134498118 hasConcept C132525143 @default.
- W3134498118 hasConcept C153180895 @default.
- W3134498118 hasConcept C154945302 @default.
- W3134498118 hasConcept C2781221856 @default.
- W3134498118 hasConcept C33923547 @default.
- W3134498118 hasConcept C41008148 @default.
- W3134498118 hasConcept C48044578 @default.
- W3134498118 hasConcept C77088390 @default.
- W3134498118 hasConcept C80444323 @default.
- W3134498118 hasConcept C81363708 @default.
- W3134498118 hasConceptScore W3134498118C118615104 @default.
- W3134498118 hasConceptScore W3134498118C132525143 @default.
- W3134498118 hasConceptScore W3134498118C153180895 @default.
- W3134498118 hasConceptScore W3134498118C154945302 @default.
- W3134498118 hasConceptScore W3134498118C2781221856 @default.
- W3134498118 hasConceptScore W3134498118C33923547 @default.
- W3134498118 hasConceptScore W3134498118C41008148 @default.
- W3134498118 hasConceptScore W3134498118C48044578 @default.
- W3134498118 hasConceptScore W3134498118C77088390 @default.
- W3134498118 hasConceptScore W3134498118C80444323 @default.
- W3134498118 hasConceptScore W3134498118C81363708 @default.
- W3134498118 hasFunder F4320321001 @default.
- W3134498118 hasLocation W31344981181 @default.
- W3134498118 hasOpenAccess W3134498118 @default.
- W3134498118 hasPrimaryLocation W31344981181 @default.
- W3134498118 hasRelatedWork W10637459 @default.
- W3134498118 hasRelatedWork W11851375 @default.
- W3134498118 hasRelatedWork W12433487 @default.
- W3134498118 hasRelatedWork W13739148 @default.
- W3134498118 hasRelatedWork W2582698 @default.
- W3134498118 hasRelatedWork W5374421 @default.
- W3134498118 hasRelatedWork W7585623 @default.
- W3134498118 hasRelatedWork W7857344 @default.
- W3134498118 hasRelatedWork W9043603 @default.
- W3134498118 hasRelatedWork W9190101 @default.
- W3134498118 isParatext "false" @default.
- W3134498118 isRetracted "false" @default.
- W3134498118 magId "3134498118" @default.
- W3134498118 workType "article" @default.