Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134511346> ?p ?o ?g. }
- W3134511346 abstract "Medical image acquisition is often intervented by unwanted noise that corrupts the information content. This paper introduces an unsupervised medical image denoising technique that learns noise characteristics from the available images and constructs denoised images. It comprises of two blocks of data processing, viz., patch-based dictionaries that indirectly learn the noise and residual learning (RL) that directly learns the noise. The model is generalized to account for both 2D and 3D images considering different medical imaging instruments. The images are considered one-by-one from the stack of MRI/CT images as well as the entire stack is considered, and decomposed into overlapping image/volume patches. These patches are given to the patch-based dictionary learning to learn noise characteristics via sparse representation while given to the RL part to directly learn the noise properties. K-singular value decomposition (K-SVD) algorithm for sparse representation is used for training patch-based dictionaries. On the other hand, residue in the patches is trained using the proposed deep residue network. Iterating on these two parts, an optimum noise characterization for each image/volume patch is captured and in turn it is subtracted from the available respective image/volume patch. The obtained denoised image/volume patches are finally assembled to a denoised image or 3D stack. We provide an analysis of the proposed approach with other approaches. Experiments on MRI/CT datasets are run on a GPU-based supercomputer and the comparative results show that the proposed algorithm preserves the critical information in the images as well as improves the visual quality of the images." @default.
- W3134511346 created "2021-03-15" @default.
- W3134511346 creator A5001216338 @default.
- W3134511346 creator A5015096015 @default.
- W3134511346 creator A5075822182 @default.
- W3134511346 date "2021-03-11" @default.
- W3134511346 modified "2023-09-27" @default.
- W3134511346 title "An unsupervised deep learning framework for medical image denoising." @default.
- W3134511346 cites W1545988247 @default.
- W3134511346 cites W1571961156 @default.
- W3134511346 cites W1964394948 @default.
- W3134511346 cites W2001234856 @default.
- W3134511346 cites W2029816571 @default.
- W3134511346 cites W2046372571 @default.
- W3134511346 cites W2056370875 @default.
- W3134511346 cites W2064076387 @default.
- W3134511346 cites W2064225328 @default.
- W3134511346 cites W2073660032 @default.
- W3134511346 cites W2101891472 @default.
- W3134511346 cites W2109577576 @default.
- W3134511346 cites W2110492881 @default.
- W3134511346 cites W2127271355 @default.
- W3134511346 cites W2136396015 @default.
- W3134511346 cites W2137969878 @default.
- W3134511346 cites W2138018102 @default.
- W3134511346 cites W2140064412 @default.
- W3134511346 cites W2154041909 @default.
- W3134511346 cites W2160547390 @default.
- W3134511346 cites W2168668658 @default.
- W3134511346 cites W2277789569 @default.
- W3134511346 cites W2570202822 @default.
- W3134511346 cites W2574952845 @default.
- W3134511346 cites W2618025634 @default.
- W3134511346 cites W2621235041 @default.
- W3134511346 cites W2743780012 @default.
- W3134511346 cites W2777186991 @default.
- W3134511346 cites W2790477006 @default.
- W3134511346 cites W2799384663 @default.
- W3134511346 cites W2803086176 @default.
- W3134511346 cites W2887579808 @default.
- W3134511346 cites W2890272118 @default.
- W3134511346 cites W2903444831 @default.
- W3134511346 cites W2919234133 @default.
- W3134511346 cites W2931364255 @default.
- W3134511346 cites W2941642631 @default.
- W3134511346 cites W2958439762 @default.
- W3134511346 cites W2988553273 @default.
- W3134511346 cites W2990014955 @default.
- W3134511346 cites W2990026901 @default.
- W3134511346 cites W3002879859 @default.
- W3134511346 cites W3032190803 @default.
- W3134511346 cites W3041466907 @default.
- W3134511346 cites W3105299938 @default.
- W3134511346 cites W2810034908 @default.
- W3134511346 hasPublicationYear "2021" @default.
- W3134511346 type Work @default.
- W3134511346 sameAs 3134511346 @default.
- W3134511346 citedByCount "0" @default.
- W3134511346 crossrefType "posted-content" @default.
- W3134511346 hasAuthorship W3134511346A5001216338 @default.
- W3134511346 hasAuthorship W3134511346A5015096015 @default.
- W3134511346 hasAuthorship W3134511346A5075822182 @default.
- W3134511346 hasConcept C115961682 @default.
- W3134511346 hasConcept C121332964 @default.
- W3134511346 hasConcept C124066611 @default.
- W3134511346 hasConcept C153180895 @default.
- W3134511346 hasConcept C154945302 @default.
- W3134511346 hasConcept C163294075 @default.
- W3134511346 hasConcept C20556612 @default.
- W3134511346 hasConcept C22789450 @default.
- W3134511346 hasConcept C31972630 @default.
- W3134511346 hasConcept C41008148 @default.
- W3134511346 hasConcept C62520636 @default.
- W3134511346 hasConcept C99498987 @default.
- W3134511346 hasConceptScore W3134511346C115961682 @default.
- W3134511346 hasConceptScore W3134511346C121332964 @default.
- W3134511346 hasConceptScore W3134511346C124066611 @default.
- W3134511346 hasConceptScore W3134511346C153180895 @default.
- W3134511346 hasConceptScore W3134511346C154945302 @default.
- W3134511346 hasConceptScore W3134511346C163294075 @default.
- W3134511346 hasConceptScore W3134511346C20556612 @default.
- W3134511346 hasConceptScore W3134511346C22789450 @default.
- W3134511346 hasConceptScore W3134511346C31972630 @default.
- W3134511346 hasConceptScore W3134511346C41008148 @default.
- W3134511346 hasConceptScore W3134511346C62520636 @default.
- W3134511346 hasConceptScore W3134511346C99498987 @default.
- W3134511346 hasLocation W31345113461 @default.
- W3134511346 hasOpenAccess W3134511346 @default.
- W3134511346 hasPrimaryLocation W31345113461 @default.
- W3134511346 hasRelatedWork W136471272 @default.
- W3134511346 hasRelatedWork W1558185685 @default.
- W3134511346 hasRelatedWork W2008711994 @default.
- W3134511346 hasRelatedWork W2015127038 @default.
- W3134511346 hasRelatedWork W2034768882 @default.
- W3134511346 hasRelatedWork W2061941628 @default.
- W3134511346 hasRelatedWork W2131628993 @default.
- W3134511346 hasRelatedWork W2380161456 @default.
- W3134511346 hasRelatedWork W2519258916 @default.
- W3134511346 hasRelatedWork W2590601827 @default.
- W3134511346 hasRelatedWork W2594268324 @default.