Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134529309> ?p ?o ?g. }
- W3134529309 abstract "Disease prediction is a well-known classification problem in medical applications. Graph neural networks provide a powerful tool for analyzing the patients' features relative to each other. Recently, Graph Convolutional Networks (GCNs) have particularly been studied in the field of disease prediction. Due to the nature of such medical datasets, the class imbalance is a familiar issue in the field of disease prediction. When the class imbalance is present in the data, the existing graph-based classifiers tend to be biased towards the major class(es). Meanwhile, the correct diagnosis of the rare true-positive cases among all the patients is vital. In conventional methods, such imbalance is tackled by assigning appropriate weights to classes in the loss function; however, this solution is still dependent on the relative values of weights, sensitive to outliers, and in some cases biased towards the minor class(es). In this paper, we propose Re-weighted Adversarial Graph Convolutional Network (RA-GCN) to enhance the performance of the graph-based classifier and prevent it from emphasizing the samples of any particular class. This is accomplished by automatically learning to weigh the samples of the classes. For this purpose, a graph-based network is associated with each class, which is responsible for weighing the class samples and informing the classifier about the importance of each sample. Therefore, the classifier adjusts itself and determines the boundary between classes with more attention to the important samples. The parameters of the classifier and weighing networks are trained by an adversarial approach. At the end of the adversarial training process, the boundary of the classifier is more accurate and unbiased. We show the superiority of RA-GCN on synthetic and three publicly available medical datasets compared to the recent method." @default.
- W3134529309 created "2021-03-15" @default.
- W3134529309 creator A5008387529 @default.
- W3134529309 creator A5016471759 @default.
- W3134529309 creator A5046896448 @default.
- W3134529309 creator A5063512925 @default.
- W3134529309 creator A5069082023 @default.
- W3134529309 date "2021-02-27" @default.
- W3134529309 modified "2023-09-23" @default.
- W3134529309 title "RA-GCN: Graph Convolutional Network for Disease Prediction Problems with Imbalanced Data" @default.
- W3134529309 cites W1541145887 @default.
- W3134529309 cites W1623006543 @default.
- W3134529309 cites W1651586605 @default.
- W3134529309 cites W1662382123 @default.
- W3134529309 cites W1665214252 @default.
- W3134529309 cites W1988494453 @default.
- W3134529309 cites W2015452969 @default.
- W3134529309 cites W2101234009 @default.
- W3134529309 cites W2101491865 @default.
- W3134529309 cites W2104167780 @default.
- W3134529309 cites W2112076978 @default.
- W3134529309 cites W2118978333 @default.
- W3134529309 cites W2410189687 @default.
- W3134529309 cites W2490420619 @default.
- W3134529309 cites W2558748708 @default.
- W3134529309 cites W2604525417 @default.
- W3134529309 cites W2619846146 @default.
- W3134529309 cites W2738681903 @default.
- W3134529309 cites W2798869704 @default.
- W3134529309 cites W2804566321 @default.
- W3134529309 cites W2809254203 @default.
- W3134529309 cites W2885085290 @default.
- W3134529309 cites W2889751329 @default.
- W3134529309 cites W2891943104 @default.
- W3134529309 cites W2897069058 @default.
- W3134529309 cites W2899771611 @default.
- W3134529309 cites W2902551813 @default.
- W3134529309 cites W2908465383 @default.
- W3134529309 cites W2921730678 @default.
- W3134529309 cites W2936503027 @default.
- W3134529309 cites W2945848398 @default.
- W3134529309 cites W2949767632 @default.
- W3134529309 cites W2950697450 @default.
- W3134529309 cites W2962767366 @default.
- W3134529309 cites W2963181848 @default.
- W3134529309 cites W2963242637 @default.
- W3134529309 cites W2963596856 @default.
- W3134529309 cites W2963673836 @default.
- W3134529309 cites W2963691377 @default.
- W3134529309 cites W2963858333 @default.
- W3134529309 cites W2964015378 @default.
- W3134529309 cites W2964121744 @default.
- W3134529309 cites W2964321699 @default.
- W3134529309 cites W2979583482 @default.
- W3134529309 cites W2979683452 @default.
- W3134529309 cites W2985331920 @default.
- W3134529309 cites W2995098893 @default.
- W3134529309 cites W2995160380 @default.
- W3134529309 cites W2998082204 @default.
- W3134529309 cites W2998313947 @default.
- W3134529309 cites W3005125193 @default.
- W3134529309 cites W3010683590 @default.
- W3134529309 cites W3011667710 @default.
- W3134529309 cites W3013868095 @default.
- W3134529309 cites W3019011053 @default.
- W3134529309 cites W3022222974 @default.
- W3134529309 cites W3024704409 @default.
- W3134529309 cites W3025623662 @default.
- W3134529309 cites W3027226623 @default.
- W3134529309 cites W3031298515 @default.
- W3134529309 cites W3033154929 @default.
- W3134529309 cites W3035286001 @default.
- W3134529309 cites W3038155884 @default.
- W3134529309 cites W3045858585 @default.
- W3134529309 cites W3048964647 @default.
- W3134529309 cites W3095689340 @default.
- W3134529309 cites W3096831136 @default.
- W3134529309 cites W3097520631 @default.
- W3134529309 cites W3099610412 @default.
- W3134529309 cites W3102895271 @default.
- W3134529309 cites W3107252718 @default.
- W3134529309 cites W3116871539 @default.
- W3134529309 cites W571200655 @default.
- W3134529309 hasPublicationYear "2021" @default.
- W3134529309 type Work @default.
- W3134529309 sameAs 3134529309 @default.
- W3134529309 citedByCount "2" @default.
- W3134529309 countsByYear W31345293092021 @default.
- W3134529309 crossrefType "posted-content" @default.
- W3134529309 hasAuthorship W3134529309A5008387529 @default.
- W3134529309 hasAuthorship W3134529309A5016471759 @default.
- W3134529309 hasAuthorship W3134529309A5046896448 @default.
- W3134529309 hasAuthorship W3134529309A5063512925 @default.
- W3134529309 hasAuthorship W3134529309A5069082023 @default.
- W3134529309 hasConcept C119857082 @default.
- W3134529309 hasConcept C132525143 @default.
- W3134529309 hasConcept C153180895 @default.
- W3134529309 hasConcept C154945302 @default.
- W3134529309 hasConcept C41008148 @default.
- W3134529309 hasConcept C79337645 @default.