Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134541969> ?p ?o ?g. }
- W3134541969 endingPage "7219" @default.
- W3134541969 startingPage "7199" @default.
- W3134541969 abstract "Abstract. Mesoscale dynamics in the mesosphere and lower thermosphere (MLT) region have been difficult to study from either ground- or satellite-based observations. For understanding of atmospheric coupling processes, important spatial scales at these altitudes range between tens and hundreds of kilometers in the horizontal plane. To date, this scale size is challenging observationally, so structures are usually parameterized in global circulation models. The advent of multistatic specular meteor radar networks allows exploration of MLT mesoscale dynamics on these scales using an increased number of detections and a diversity of viewing angles inherent to multistatic networks. In this work, we introduce a four-dimensional wind field inversion method that makes use of Gaussian process regression (GPR), which is a nonparametric and Bayesian approach. The method takes measured projected wind velocities and prior distributions of the wind velocity as a function of space and time, specified by the user or estimated from the data, and produces posterior distributions for the wind velocity. Computation of the predictive posterior distribution is performed on sampled points of interest and is not necessarily regularly sampled. The main benefits of the GPR method include this non-gridded sampling, the built-in statistical uncertainty estimates, and the ability to horizontally resolve winds on relatively small scales. The performance of the GPR implementation has been evaluated on Monte Carlo simulations with known distributions using the same spatial and temporal sampling as 1 d of real meteor measurements. Based on the simulation results we find that the GPR implementation is robust, providing wind fields that are statistically unbiased with statistical variances that depend on the geometry and are proportional to the prior velocity variances. A conservative and fast approach can be straightforwardly implemented by employing overestimated prior variances and distances, while a more robust but computationally intensive approach can be implemented by employing training and fitting of model hyperparameters. The latter GPR approach has been applied to a 24 h dataset and shown to compare well to previously used homogeneous and gradient methods. Small-scale features have reasonably low statistical uncertainties, implying geophysical wind field horizontal structures as low as 20–50 km. We suggest that this GPR approach forms a suitable method for MLT regional and weather studies." @default.
- W3134541969 created "2021-03-15" @default.
- W3134541969 creator A5014053010 @default.
- W3134541969 creator A5035258923 @default.
- W3134541969 creator A5039766270 @default.
- W3134541969 creator A5052589189 @default.
- W3134541969 creator A5056821366 @default.
- W3134541969 creator A5080002917 @default.
- W3134541969 date "2021-11-17" @default.
- W3134541969 modified "2023-10-09" @default.
- W3134541969 title "Four-dimensional mesospheric and lower thermospheric wind fields using Gaussian process regression on multistatic specular meteor radar observations" @default.
- W3134541969 cites W1519529170 @default.
- W3134541969 cites W1597551505 @default.
- W3134541969 cites W1818539450 @default.
- W3134541969 cites W2008280588 @default.
- W3134541969 cites W2023854587 @default.
- W3134541969 cites W2028813271 @default.
- W3134541969 cites W2043748895 @default.
- W3134541969 cites W2046680395 @default.
- W3134541969 cites W2052699631 @default.
- W3134541969 cites W2063335320 @default.
- W3134541969 cites W2067916732 @default.
- W3134541969 cites W2083838310 @default.
- W3134541969 cites W2086538816 @default.
- W3134541969 cites W2099658384 @default.
- W3134541969 cites W2112137509 @default.
- W3134541969 cites W2115184922 @default.
- W3134541969 cites W2124207940 @default.
- W3134541969 cites W2127585893 @default.
- W3134541969 cites W2130595012 @default.
- W3134541969 cites W2135455120 @default.
- W3134541969 cites W2136689576 @default.
- W3134541969 cites W2154026648 @default.
- W3134541969 cites W2168900995 @default.
- W3134541969 cites W2270004106 @default.
- W3134541969 cites W2626588389 @default.
- W3134541969 cites W2767848202 @default.
- W3134541969 cites W2792030065 @default.
- W3134541969 cites W2792815442 @default.
- W3134541969 cites W2795942535 @default.
- W3134541969 cites W2887108600 @default.
- W3134541969 cites W2890938693 @default.
- W3134541969 cites W2905978916 @default.
- W3134541969 cites W2910719738 @default.
- W3134541969 cites W2939144605 @default.
- W3134541969 cites W2945266861 @default.
- W3134541969 cites W2950675277 @default.
- W3134541969 cites W2955221593 @default.
- W3134541969 cites W2967848366 @default.
- W3134541969 cites W2968210517 @default.
- W3134541969 cites W3096126928 @default.
- W3134541969 cites W3097129971 @default.
- W3134541969 cites W3103145119 @default.
- W3134541969 cites W3111967007 @default.
- W3134541969 cites W3113008532 @default.
- W3134541969 cites W4211049957 @default.
- W3134541969 cites W4248367042 @default.
- W3134541969 doi "https://doi.org/10.5194/amt-14-7199-2021" @default.
- W3134541969 hasPublicationYear "2021" @default.
- W3134541969 type Work @default.
- W3134541969 sameAs 3134541969 @default.
- W3134541969 citedByCount "2" @default.
- W3134541969 countsByYear W31345419692022 @default.
- W3134541969 crossrefType "journal-article" @default.
- W3134541969 hasAuthorship W3134541969A5014053010 @default.
- W3134541969 hasAuthorship W3134541969A5035258923 @default.
- W3134541969 hasAuthorship W3134541969A5039766270 @default.
- W3134541969 hasAuthorship W3134541969A5052589189 @default.
- W3134541969 hasAuthorship W3134541969A5056821366 @default.
- W3134541969 hasAuthorship W3134541969A5080002917 @default.
- W3134541969 hasBestOaLocation W31345419691 @default.
- W3134541969 hasConcept C105795698 @default.
- W3134541969 hasConcept C116403925 @default.
- W3134541969 hasConcept C119857082 @default.
- W3134541969 hasConcept C127313418 @default.
- W3134541969 hasConcept C131980223 @default.
- W3134541969 hasConcept C153294291 @default.
- W3134541969 hasConcept C19499675 @default.
- W3134541969 hasConcept C205649164 @default.
- W3134541969 hasConcept C33923547 @default.
- W3134541969 hasConcept C39432304 @default.
- W3134541969 hasConcept C40382383 @default.
- W3134541969 hasConcept C41008148 @default.
- W3134541969 hasConcept C554190296 @default.
- W3134541969 hasConcept C62649853 @default.
- W3134541969 hasConcept C71813955 @default.
- W3134541969 hasConcept C76155785 @default.
- W3134541969 hasConcept C8058405 @default.
- W3134541969 hasConcept C81692654 @default.
- W3134541969 hasConceptScore W3134541969C105795698 @default.
- W3134541969 hasConceptScore W3134541969C116403925 @default.
- W3134541969 hasConceptScore W3134541969C119857082 @default.
- W3134541969 hasConceptScore W3134541969C127313418 @default.
- W3134541969 hasConceptScore W3134541969C131980223 @default.
- W3134541969 hasConceptScore W3134541969C153294291 @default.
- W3134541969 hasConceptScore W3134541969C19499675 @default.
- W3134541969 hasConceptScore W3134541969C205649164 @default.
- W3134541969 hasConceptScore W3134541969C33923547 @default.