Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134561016> ?p ?o ?g. }
- W3134561016 endingPage "818" @default.
- W3134561016 startingPage "806" @default.
- W3134561016 abstract "Data-based procedures for monitoring the operating performance of a PV system are proposed in this article. The only information required to apply the procedures is the availability of system measurements, which are routinely on-line collected via sensors. Here, kernel-based machine learning methods, including support vector regression (SVR) and Gaussian process regression (GPR), are used to model multivariate data from the PV system for fault detection because of their flexibility and capability to nonlinear approximation. Essentially, the SVR and GPR models are adopted to obtain residuals to detect and identify occurred faults. Then, residuals are passed through an exponential smoothing filter to reduce noise and improve data quality. In this work, a monitoring scheme based on kernel density estimation is used to sense faults by examining the generated residuals. Several different scenarios of faults were considered in this study, including PV string fault, partial shading, PV modules short-circuited, module degradation, and line-line faults on the PV array. Using data from a 20 MWp grid-connected PV system, the considered faults were successfully traced using the developed procedures. Also, it has been demonstrated that GPR-based monitoring procedures achieve better detection performance over SVRs to monitor PV systems." @default.
- W3134561016 created "2021-03-15" @default.
- W3134561016 creator A5059861156 @default.
- W3134561016 creator A5069762126 @default.
- W3134561016 creator A5087572406 @default.
- W3134561016 creator A5090118631 @default.
- W3134561016 date "2021-05-01" @default.
- W3134561016 modified "2023-09-29" @default.
- W3134561016 title "Monitoring of Photovoltaic Systems Using Improved Kernel-Based Learning Schemes" @default.
- W3134561016 cites W1489950266 @default.
- W3134561016 cites W1596717185 @default.
- W3134561016 cites W1937731213 @default.
- W3134561016 cites W1964357740 @default.
- W3134561016 cites W1965421670 @default.
- W3134561016 cites W1983853640 @default.
- W3134561016 cites W1994377164 @default.
- W3134561016 cites W2010599085 @default.
- W3134561016 cites W2051124239 @default.
- W3134561016 cites W2053443947 @default.
- W3134561016 cites W2060649099 @default.
- W3134561016 cites W2060976371 @default.
- W3134561016 cites W2092669910 @default.
- W3134561016 cites W2096991872 @default.
- W3134561016 cites W2106642194 @default.
- W3134561016 cites W2118020555 @default.
- W3134561016 cites W2145648935 @default.
- W3134561016 cites W2280977705 @default.
- W3134561016 cites W2514414386 @default.
- W3134561016 cites W2586355586 @default.
- W3134561016 cites W2610354682 @default.
- W3134561016 cites W2618724668 @default.
- W3134561016 cites W2755287105 @default.
- W3134561016 cites W2767097949 @default.
- W3134561016 cites W2772918677 @default.
- W3134561016 cites W2775904338 @default.
- W3134561016 cites W2795975941 @default.
- W3134561016 cites W2804446681 @default.
- W3134561016 cites W2896764759 @default.
- W3134561016 cites W2896830844 @default.
- W3134561016 cites W2896906987 @default.
- W3134561016 cites W2902361232 @default.
- W3134561016 cites W2903469562 @default.
- W3134561016 cites W2908220257 @default.
- W3134561016 cites W2913001695 @default.
- W3134561016 cites W2922147072 @default.
- W3134561016 cites W2922415109 @default.
- W3134561016 cites W2931254400 @default.
- W3134561016 cites W2955168996 @default.
- W3134561016 cites W2960251544 @default.
- W3134561016 cites W2968982948 @default.
- W3134561016 cites W2985465611 @default.
- W3134561016 cites W2999785016 @default.
- W3134561016 cites W3003631106 @default.
- W3134561016 cites W3008397052 @default.
- W3134561016 cites W3013107223 @default.
- W3134561016 cites W3022574334 @default.
- W3134561016 cites W3089204400 @default.
- W3134561016 doi "https://doi.org/10.1109/jphotov.2021.3057169" @default.
- W3134561016 hasPublicationYear "2021" @default.
- W3134561016 type Work @default.
- W3134561016 sameAs 3134561016 @default.
- W3134561016 citedByCount "25" @default.
- W3134561016 countsByYear W31345610162021 @default.
- W3134561016 countsByYear W31345610162022 @default.
- W3134561016 countsByYear W31345610162023 @default.
- W3134561016 crossrefType "journal-article" @default.
- W3134561016 hasAuthorship W3134561016A5059861156 @default.
- W3134561016 hasAuthorship W3134561016A5069762126 @default.
- W3134561016 hasAuthorship W3134561016A5087572406 @default.
- W3134561016 hasAuthorship W3134561016A5090118631 @default.
- W3134561016 hasBestOaLocation W31345610162 @default.
- W3134561016 hasConcept C114614502 @default.
- W3134561016 hasConcept C119599485 @default.
- W3134561016 hasConcept C119857082 @default.
- W3134561016 hasConcept C12267149 @default.
- W3134561016 hasConcept C127313418 @default.
- W3134561016 hasConcept C127413603 @default.
- W3134561016 hasConcept C152745839 @default.
- W3134561016 hasConcept C154945302 @default.
- W3134561016 hasConcept C165205528 @default.
- W3134561016 hasConcept C172707124 @default.
- W3134561016 hasConcept C175551986 @default.
- W3134561016 hasConcept C31972630 @default.
- W3134561016 hasConcept C33923547 @default.
- W3134561016 hasConcept C3770464 @default.
- W3134561016 hasConcept C41008148 @default.
- W3134561016 hasConcept C41291067 @default.
- W3134561016 hasConcept C74193536 @default.
- W3134561016 hasConcept C81692654 @default.
- W3134561016 hasConceptScore W3134561016C114614502 @default.
- W3134561016 hasConceptScore W3134561016C119599485 @default.
- W3134561016 hasConceptScore W3134561016C119857082 @default.
- W3134561016 hasConceptScore W3134561016C12267149 @default.
- W3134561016 hasConceptScore W3134561016C127313418 @default.
- W3134561016 hasConceptScore W3134561016C127413603 @default.
- W3134561016 hasConceptScore W3134561016C152745839 @default.
- W3134561016 hasConceptScore W3134561016C154945302 @default.
- W3134561016 hasConceptScore W3134561016C165205528 @default.