Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134585217> ?p ?o ?g. }
- W3134585217 endingPage "1613" @default.
- W3134585217 startingPage "1599" @default.
- W3134585217 abstract "The existing long-term time-series forecasting methods based on the neural networks suffer from multiple limitations, such as accumulated errors and diminishing temporal correlation, which compromise the prediction quality. To overcome these shortcomings, in this article, we build trend fuzzy granulation-based long short-term memory (LSTM) neural networks to carry out long-term forecasting, where data points with consistent trend characteristics, including trend change, fluctuation range, and trend persistence, are predicted in unison rather than individually. Noticing that these trend characteristics are more urgently needed than just magnitude information, a question on how to granulate a time series into a granular time series consists of meaningful granules containing trend information that comes to be a crucial step. Only if the established granules fit the varying patterns of time series at utmost, such a granulation can make sense for the improvement of the forecasting accuracy; thus, an optimization method of trend-oriented fuzzy granulation is proposed to meliorate the granulation results. With the built trend fuzzy granulation-based LSTM networks, the successive iterations of one-step forecasting are prevented, and the prediction errors of data within a granule will not further increase. This is the first attempt to build trend fuzzy granule-based LSTM to predict the trend characteristics. Experiments on publicly available time series show good performance of the proposed model." @default.
- W3134585217 created "2021-03-15" @default.
- W3134585217 creator A5003799782 @default.
- W3134585217 creator A5027360778 @default.
- W3134585217 creator A5052943993 @default.
- W3134585217 creator A5056718487 @default.
- W3134585217 creator A5071179460 @default.
- W3134585217 creator A5075869337 @default.
- W3134585217 date "2022-06-01" @default.
- W3134585217 modified "2023-10-17" @default.
- W3134585217 title "Building Trend Fuzzy Granulation-Based LSTM Recurrent Neural Network for Long-Term Time-Series Forecasting" @default.
- W3134585217 cites W1968112823 @default.
- W3134585217 cites W1970284904 @default.
- W3134585217 cites W1978996791 @default.
- W3134585217 cites W1979464351 @default.
- W3134585217 cites W1979637725 @default.
- W3134585217 cites W1994295547 @default.
- W3134585217 cites W2001339767 @default.
- W3134585217 cites W2028702910 @default.
- W3134585217 cites W2032852212 @default.
- W3134585217 cites W2034621243 @default.
- W3134585217 cites W2039935421 @default.
- W3134585217 cites W2046356540 @default.
- W3134585217 cites W2059804518 @default.
- W3134585217 cites W2064675550 @default.
- W3134585217 cites W2079502544 @default.
- W3134585217 cites W2083164987 @default.
- W3134585217 cites W2089700840 @default.
- W3134585217 cites W2113238782 @default.
- W3134585217 cites W2117014758 @default.
- W3134585217 cites W2133042373 @default.
- W3134585217 cites W2144499799 @default.
- W3134585217 cites W2157423047 @default.
- W3134585217 cites W2248342699 @default.
- W3134585217 cites W2533328922 @default.
- W3134585217 cites W2550257869 @default.
- W3134585217 cites W2594182135 @default.
- W3134585217 cites W2758567761 @default.
- W3134585217 cites W2769821182 @default.
- W3134585217 cites W2783290031 @default.
- W3134585217 cites W2787084639 @default.
- W3134585217 cites W2791047295 @default.
- W3134585217 cites W2791661525 @default.
- W3134585217 cites W2796538079 @default.
- W3134585217 cites W2896827527 @default.
- W3134585217 cites W2900749811 @default.
- W3134585217 cites W3028461748 @default.
- W3134585217 cites W4254816979 @default.
- W3134585217 doi "https://doi.org/10.1109/tfuzz.2021.3062723" @default.
- W3134585217 hasPublicationYear "2022" @default.
- W3134585217 type Work @default.
- W3134585217 sameAs 3134585217 @default.
- W3134585217 citedByCount "19" @default.
- W3134585217 countsByYear W31345852172021 @default.
- W3134585217 countsByYear W31345852172022 @default.
- W3134585217 countsByYear W31345852172023 @default.
- W3134585217 crossrefType "journal-article" @default.
- W3134585217 hasAuthorship W3134585217A5003799782 @default.
- W3134585217 hasAuthorship W3134585217A5027360778 @default.
- W3134585217 hasAuthorship W3134585217A5052943993 @default.
- W3134585217 hasAuthorship W3134585217A5056718487 @default.
- W3134585217 hasAuthorship W3134585217A5071179460 @default.
- W3134585217 hasAuthorship W3134585217A5075869337 @default.
- W3134585217 hasConcept C119857082 @default.
- W3134585217 hasConcept C121332964 @default.
- W3134585217 hasConcept C124101348 @default.
- W3134585217 hasConcept C127142870 @default.
- W3134585217 hasConcept C127413603 @default.
- W3134585217 hasConcept C143724316 @default.
- W3134585217 hasConcept C151406439 @default.
- W3134585217 hasConcept C151730666 @default.
- W3134585217 hasConcept C154945302 @default.
- W3134585217 hasConcept C175706884 @default.
- W3134585217 hasConcept C187320778 @default.
- W3134585217 hasConcept C31972630 @default.
- W3134585217 hasConcept C41008148 @default.
- W3134585217 hasConcept C50644808 @default.
- W3134585217 hasConcept C58166 @default.
- W3134585217 hasConcept C61797465 @default.
- W3134585217 hasConcept C62520636 @default.
- W3134585217 hasConcept C86803240 @default.
- W3134585217 hasConcept C88463166 @default.
- W3134585217 hasConceptScore W3134585217C119857082 @default.
- W3134585217 hasConceptScore W3134585217C121332964 @default.
- W3134585217 hasConceptScore W3134585217C124101348 @default.
- W3134585217 hasConceptScore W3134585217C127142870 @default.
- W3134585217 hasConceptScore W3134585217C127413603 @default.
- W3134585217 hasConceptScore W3134585217C143724316 @default.
- W3134585217 hasConceptScore W3134585217C151406439 @default.
- W3134585217 hasConceptScore W3134585217C151730666 @default.
- W3134585217 hasConceptScore W3134585217C154945302 @default.
- W3134585217 hasConceptScore W3134585217C175706884 @default.
- W3134585217 hasConceptScore W3134585217C187320778 @default.
- W3134585217 hasConceptScore W3134585217C31972630 @default.
- W3134585217 hasConceptScore W3134585217C41008148 @default.
- W3134585217 hasConceptScore W3134585217C50644808 @default.
- W3134585217 hasConceptScore W3134585217C58166 @default.
- W3134585217 hasConceptScore W3134585217C61797465 @default.