Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134600612> ?p ?o ?g. }
- W3134600612 endingPage "727" @default.
- W3134600612 startingPage "716" @default.
- W3134600612 abstract "Nowadays, social network plays an important role in human life. Besides all advantages of social networks, the dissemination of rumors becomes a major concern for users, so it is important to find a way to limit the spread of misinformation as much as possible. Influence blocking maximization (IBM) is the problem of finding k nodes in a social graph to minimize the spread of rumor source at the end of a propagation process. In this article, we propose a two-step method called influence blocking maximization using martingale (IBMM) to solve IBM problem under competitive independent cascade model (ICM) with both (1-1/e-ε)-approximation guarantee and practical runtime efficiency. In the proposed method, first we calculate the number of required samples using a set of estimation techniques based on martingale; and then we generate the samples and find top- k savior nodes. We perform extensive experiments on three real-world data sets and three rumor sets with different behaviors. We both experimentally and theoretically show that the effectiveness of IBMM is close to greedy. The results also show that IBMM is very fast, in particular, for a network with 265 214 nodes, 420 045 edges, and a set of 50 high influential nodes as rumor, when k = 50, l=1, and ε = 0.5 IBMM returns the solution within 3.5 s." @default.
- W3134600612 created "2021-03-15" @default.
- W3134600612 creator A5024902964 @default.
- W3134600612 creator A5070275447 @default.
- W3134600612 creator A5077652650 @default.
- W3134600612 date "2021-06-01" @default.
- W3134600612 modified "2023-10-14" @default.
- W3134600612 title "A Theoretically Guaranteed Approach to Efficiently Block the Influence of Misinformation in Social Networks" @default.
- W3134600612 cites W1512602432 @default.
- W3134600612 cites W1996218898 @default.
- W3134600612 cites W2002792327 @default.
- W3134600612 cites W2009305899 @default.
- W3134600612 cites W2024602057 @default.
- W3134600612 cites W2035165116 @default.
- W3134600612 cites W2053921869 @default.
- W3134600612 cites W2061820396 @default.
- W3134600612 cites W2085419924 @default.
- W3134600612 cites W2092580500 @default.
- W3134600612 cites W2108858998 @default.
- W3134600612 cites W2132801025 @default.
- W3134600612 cites W2139297408 @default.
- W3134600612 cites W2141403143 @default.
- W3134600612 cites W2160411082 @default.
- W3134600612 cites W2166470254 @default.
- W3134600612 cites W2177876037 @default.
- W3134600612 cites W2185894252 @default.
- W3134600612 cites W2299294686 @default.
- W3134600612 cites W2335957883 @default.
- W3134600612 cites W2493103841 @default.
- W3134600612 cites W2558384379 @default.
- W3134600612 cites W2599382433 @default.
- W3134600612 cites W2610922577 @default.
- W3134600612 cites W2615511538 @default.
- W3134600612 cites W2730110879 @default.
- W3134600612 cites W2736635164 @default.
- W3134600612 cites W2740045046 @default.
- W3134600612 cites W2766229592 @default.
- W3134600612 cites W2770609074 @default.
- W3134600612 cites W2897684070 @default.
- W3134600612 cites W2906490184 @default.
- W3134600612 cites W2907366795 @default.
- W3134600612 cites W2910911697 @default.
- W3134600612 cites W2911938397 @default.
- W3134600612 cites W2913340891 @default.
- W3134600612 cites W2915076169 @default.
- W3134600612 cites W2921369922 @default.
- W3134600612 cites W2940549883 @default.
- W3134600612 cites W2961534768 @default.
- W3134600612 cites W2963622759 @default.
- W3134600612 cites W2964292644 @default.
- W3134600612 cites W2990531287 @default.
- W3134600612 cites W4226075421 @default.
- W3134600612 cites W808508909 @default.
- W3134600612 doi "https://doi.org/10.1109/tcss.2021.3059430" @default.
- W3134600612 hasPublicationYear "2021" @default.
- W3134600612 type Work @default.
- W3134600612 sameAs 3134600612 @default.
- W3134600612 citedByCount "10" @default.
- W3134600612 countsByYear W31346006122021 @default.
- W3134600612 countsByYear W31346006122022 @default.
- W3134600612 countsByYear W31346006122023 @default.
- W3134600612 crossrefType "journal-article" @default.
- W3134600612 hasAuthorship W3134600612A5024902964 @default.
- W3134600612 hasAuthorship W3134600612A5070275447 @default.
- W3134600612 hasAuthorship W3134600612A5077652650 @default.
- W3134600612 hasConcept C105795698 @default.
- W3134600612 hasConcept C11413529 @default.
- W3134600612 hasConcept C119857082 @default.
- W3134600612 hasConcept C120314980 @default.
- W3134600612 hasConcept C126255220 @default.
- W3134600612 hasConcept C144745244 @default.
- W3134600612 hasConcept C171250308 @default.
- W3134600612 hasConcept C17744445 @default.
- W3134600612 hasConcept C192562407 @default.
- W3134600612 hasConcept C2524010 @default.
- W3134600612 hasConcept C2776330181 @default.
- W3134600612 hasConcept C2776990098 @default.
- W3134600612 hasConcept C2777210771 @default.
- W3134600612 hasConcept C2779982251 @default.
- W3134600612 hasConcept C2780469804 @default.
- W3134600612 hasConcept C31258907 @default.
- W3134600612 hasConcept C33923547 @default.
- W3134600612 hasConcept C38652104 @default.
- W3134600612 hasConcept C39549134 @default.
- W3134600612 hasConcept C41008148 @default.
- W3134600612 hasConcept C48406656 @default.
- W3134600612 hasConcept C51823790 @default.
- W3134600612 hasConcept C70388272 @default.
- W3134600612 hasConcept C73555534 @default.
- W3134600612 hasConcept C80444323 @default.
- W3134600612 hasConceptScore W3134600612C105795698 @default.
- W3134600612 hasConceptScore W3134600612C11413529 @default.
- W3134600612 hasConceptScore W3134600612C119857082 @default.
- W3134600612 hasConceptScore W3134600612C120314980 @default.
- W3134600612 hasConceptScore W3134600612C126255220 @default.
- W3134600612 hasConceptScore W3134600612C144745244 @default.
- W3134600612 hasConceptScore W3134600612C171250308 @default.
- W3134600612 hasConceptScore W3134600612C17744445 @default.