Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134626437> ?p ?o ?g. }
- W3134626437 abstract "This work presents a review of the current state of research in data-driven turbulence closure modeling. It offers a perspective on the challenges and open issues, but also on the advantages and promises of machine learning methods applied to parameter estimation, model identification, closure term reconstruction and beyond, mostly from the perspective of Large Eddy Simulation and related techniques. We stress that consistency of the training data, the model, the underlying physics and the discretization is a key issue that needs to be considered for a successful ML-augmented modeling strategy. In order to make the discussion useful for non-experts in either field, we introduce both the modeling problem in turbulence as well as the prominent ML paradigms and methods in a concise and self-consistent manner. Following, we present a survey of the current data-driven model concepts and methods, highlight important developments and put them into the context of the discussed challenges." @default.
- W3134626437 created "2021-03-15" @default.
- W3134626437 creator A5029279895 @default.
- W3134626437 creator A5063509682 @default.
- W3134626437 date "2021-03-01" @default.
- W3134626437 modified "2023-10-13" @default.
- W3134626437 title "A perspective on machine learning methods in turbulence modeling" @default.
- W3134626437 cites W1528439235 @default.
- W3134626437 cites W19012118 @default.
- W3134626437 cites W1964357740 @default.
- W3134626437 cites W1988115241 @default.
- W3134626437 cites W1995341919 @default.
- W3134626437 cites W2036305676 @default.
- W3134626437 cites W2040870580 @default.
- W3134626437 cites W2054101073 @default.
- W3134626437 cites W2064675550 @default.
- W3134626437 cites W2076063813 @default.
- W3134626437 cites W2087347434 @default.
- W3134626437 cites W2102901030 @default.
- W3134626437 cites W2103496339 @default.
- W3134626437 cites W2110418811 @default.
- W3134626437 cites W2126177295 @default.
- W3134626437 cites W2131692411 @default.
- W3134626437 cites W2147360693 @default.
- W3134626437 cites W2194775991 @default.
- W3134626437 cites W2228626927 @default.
- W3134626437 cites W2257979135 @default.
- W3134626437 cites W2329187271 @default.
- W3134626437 cites W2342045095 @default.
- W3134626437 cites W2534240011 @default.
- W3134626437 cites W2571435561 @default.
- W3134626437 cites W2585298970 @default.
- W3134626437 cites W2624142016 @default.
- W3134626437 cites W2745110207 @default.
- W3134626437 cites W2764024122 @default.
- W3134626437 cites W2768535327 @default.
- W3134626437 cites W2770660451 @default.
- W3134626437 cites W2795982117 @default.
- W3134626437 cites W2807826281 @default.
- W3134626437 cites W2899283552 @default.
- W3134626437 cites W2902480423 @default.
- W3134626437 cites W2911296969 @default.
- W3134626437 cites W2911922741 @default.
- W3134626437 cites W2919115771 @default.
- W3134626437 cites W2962777873 @default.
- W3134626437 cites W2964199361 @default.
- W3134626437 cites W2980247813 @default.
- W3134626437 cites W2980984515 @default.
- W3134626437 cites W2995408993 @default.
- W3134626437 cites W3000947656 @default.
- W3134626437 cites W3005714251 @default.
- W3134626437 cites W3010839048 @default.
- W3134626437 cites W3018098279 @default.
- W3134626437 cites W3027801118 @default.
- W3134626437 cites W3032595401 @default.
- W3134626437 cites W3035246486 @default.
- W3134626437 cites W3037054363 @default.
- W3134626437 cites W3081960887 @default.
- W3134626437 cites W3082855882 @default.
- W3134626437 cites W3088309091 @default.
- W3134626437 cites W3098093095 @default.
- W3134626437 cites W3101316902 @default.
- W3134626437 cites W3102140816 @default.
- W3134626437 cites W3104657094 @default.
- W3134626437 cites W3105438996 @default.
- W3134626437 cites W3105469151 @default.
- W3134626437 cites W3172560266 @default.
- W3134626437 cites W3188629218 @default.
- W3134626437 cites W32403112 @default.
- W3134626437 cites W4232750680 @default.
- W3134626437 cites W791179977 @default.
- W3134626437 doi "https://doi.org/10.1002/gamm.202100002" @default.
- W3134626437 hasPublicationYear "2021" @default.
- W3134626437 type Work @default.
- W3134626437 sameAs 3134626437 @default.
- W3134626437 citedByCount "42" @default.
- W3134626437 countsByYear W31346264372021 @default.
- W3134626437 countsByYear W31346264372022 @default.
- W3134626437 countsByYear W31346264372023 @default.
- W3134626437 crossrefType "journal-article" @default.
- W3134626437 hasAuthorship W3134626437A5029279895 @default.
- W3134626437 hasAuthorship W3134626437A5063509682 @default.
- W3134626437 hasBestOaLocation W31346264371 @default.
- W3134626437 hasConcept C116834253 @default.
- W3134626437 hasConcept C119857082 @default.
- W3134626437 hasConcept C121332964 @default.
- W3134626437 hasConcept C12713177 @default.
- W3134626437 hasConcept C127413603 @default.
- W3134626437 hasConcept C134306372 @default.
- W3134626437 hasConcept C146834321 @default.
- W3134626437 hasConcept C151730666 @default.
- W3134626437 hasConcept C154945302 @default.
- W3134626437 hasConcept C162324750 @default.
- W3134626437 hasConcept C196558001 @default.
- W3134626437 hasConcept C202444582 @default.
- W3134626437 hasConcept C204573209 @default.
- W3134626437 hasConcept C2522767166 @default.
- W3134626437 hasConcept C2776436953 @default.
- W3134626437 hasConcept C2779343474 @default.
- W3134626437 hasConcept C33923547 @default.