Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134638934> ?p ?o ?g. }
- W3134638934 endingPage "110" @default.
- W3134638934 startingPage "102" @default.
- W3134638934 abstract "Machine learning has been used for classification of physical behavior bouts from hip-worn accelerometers; however, this research has been limited due to the challenges of directly observing and coding human behavior in the wild. Deep learning algorithms, such as convolutional neural networks (CNNs), may offer better representation of data than other machine learning algorithms without the need for engineered features and may be better suited to dealing with free-living data. The purpose of this study was to develop a modeling pipeline for evaluation of a CNN model on a free-living data set and compare CNN inputs and results with the commonly used machine learning random forest and logistic regression algorithms.Twenty-eight free-living women wore an ActiGraph GT3X+accelerometer on their right hip for 7 days. A concurrently worn thigh-mounted activPAL device captured ground truth activity labels. The authors evaluated logistic regression, random forest, and CNN models for classifying sitting, standing, and stepping bouts. The authors also assessed the benefit of performing feature engineering for this task.The CNN classifier performed best (average balanced accuracy for bout classification of sitting, standing, and stepping was 84%) compared with the other methods (56% for logistic regression and 76% for random forest), even without performing any feature engineering.Using the recent advancements in deep neural networks, the authors showed that a CNN model can outperform other methods even without feature engineering. This has important implications for both the model's ability to deal with the complexity of free-living data and its potential transferability to new populations." @default.
- W3134638934 created "2021-03-15" @default.
- W3134638934 creator A5021913313 @default.
- W3134638934 creator A5026818466 @default.
- W3134638934 creator A5039202077 @default.
- W3134638934 creator A5042370479 @default.
- W3134638934 creator A5046369601 @default.
- W3134638934 creator A5054630465 @default.
- W3134638934 creator A5066132570 @default.
- W3134638934 creator A5069604107 @default.
- W3134638934 creator A5075059497 @default.
- W3134638934 creator A5076423165 @default.
- W3134638934 creator A5081062010 @default.
- W3134638934 date "2021-06-01" @default.
- W3134638934 modified "2023-10-12" @default.
- W3134638934 title "Application of Convolutional Neural Network Algorithms for Advancing Sedentary and Activity Bout Classification" @default.
- W3134638934 cites W1982562953 @default.
- W3134638934 cites W2002353621 @default.
- W3134638934 cites W2094458271 @default.
- W3134638934 cites W2131415741 @default.
- W3134638934 cites W2134430874 @default.
- W3134638934 cites W2152195551 @default.
- W3134638934 cites W2200539030 @default.
- W3134638934 cites W2315738348 @default.
- W3134638934 cites W2323345995 @default.
- W3134638934 cites W2488942487 @default.
- W3134638934 cites W2597360030 @default.
- W3134638934 cites W2604630936 @default.
- W3134638934 cites W2725325194 @default.
- W3134638934 cites W2736191430 @default.
- W3134638934 cites W2770878701 @default.
- W3134638934 cites W2789354820 @default.
- W3134638934 cites W2794463825 @default.
- W3134638934 cites W2795342689 @default.
- W3134638934 cites W2801905686 @default.
- W3134638934 cites W2903150444 @default.
- W3134638934 cites W2937028606 @default.
- W3134638934 cites W2948387768 @default.
- W3134638934 cites W2982110889 @default.
- W3134638934 cites W3006056140 @default.
- W3134638934 doi "https://doi.org/10.1123/jmpb.2020-0016" @default.
- W3134638934 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8389343" @default.
- W3134638934 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34458688" @default.
- W3134638934 hasPublicationYear "2021" @default.
- W3134638934 type Work @default.
- W3134638934 sameAs 3134638934 @default.
- W3134638934 citedByCount "10" @default.
- W3134638934 countsByYear W31346389342021 @default.
- W3134638934 countsByYear W31346389342022 @default.
- W3134638934 countsByYear W31346389342023 @default.
- W3134638934 crossrefType "journal-article" @default.
- W3134638934 hasAuthorship W3134638934A5021913313 @default.
- W3134638934 hasAuthorship W3134638934A5026818466 @default.
- W3134638934 hasAuthorship W3134638934A5039202077 @default.
- W3134638934 hasAuthorship W3134638934A5042370479 @default.
- W3134638934 hasAuthorship W3134638934A5046369601 @default.
- W3134638934 hasAuthorship W3134638934A5054630465 @default.
- W3134638934 hasAuthorship W3134638934A5066132570 @default.
- W3134638934 hasAuthorship W3134638934A5069604107 @default.
- W3134638934 hasAuthorship W3134638934A5075059497 @default.
- W3134638934 hasAuthorship W3134638934A5076423165 @default.
- W3134638934 hasAuthorship W3134638934A5081062010 @default.
- W3134638934 hasBestOaLocation W31346389341 @default.
- W3134638934 hasConcept C108583219 @default.
- W3134638934 hasConcept C111919701 @default.
- W3134638934 hasConcept C119857082 @default.
- W3134638934 hasConcept C138885662 @default.
- W3134638934 hasConcept C151956035 @default.
- W3134638934 hasConcept C154945302 @default.
- W3134638934 hasConcept C169258074 @default.
- W3134638934 hasConcept C2776401178 @default.
- W3134638934 hasConcept C2778827112 @default.
- W3134638934 hasConcept C41008148 @default.
- W3134638934 hasConcept C41895202 @default.
- W3134638934 hasConcept C81363708 @default.
- W3134638934 hasConcept C89805583 @default.
- W3134638934 hasConceptScore W3134638934C108583219 @default.
- W3134638934 hasConceptScore W3134638934C111919701 @default.
- W3134638934 hasConceptScore W3134638934C119857082 @default.
- W3134638934 hasConceptScore W3134638934C138885662 @default.
- W3134638934 hasConceptScore W3134638934C151956035 @default.
- W3134638934 hasConceptScore W3134638934C154945302 @default.
- W3134638934 hasConceptScore W3134638934C169258074 @default.
- W3134638934 hasConceptScore W3134638934C2776401178 @default.
- W3134638934 hasConceptScore W3134638934C2778827112 @default.
- W3134638934 hasConceptScore W3134638934C41008148 @default.
- W3134638934 hasConceptScore W3134638934C41895202 @default.
- W3134638934 hasConceptScore W3134638934C81363708 @default.
- W3134638934 hasConceptScore W3134638934C89805583 @default.
- W3134638934 hasIssue "2" @default.
- W3134638934 hasLocation W31346389341 @default.
- W3134638934 hasLocation W31346389342 @default.
- W3134638934 hasLocation W31346389343 @default.
- W3134638934 hasLocation W31346389344 @default.
- W3134638934 hasOpenAccess W3134638934 @default.
- W3134638934 hasPrimaryLocation W31346389341 @default.
- W3134638934 hasRelatedWork W2911455822 @default.
- W3134638934 hasRelatedWork W2942650110 @default.