Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134647486> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3134647486 abstract "It is an inevitable part of life to wait in queues, and not knowing how long the wait would last can be a major concern. In order to minimise this, businesses also try to forecast waiting times in order to be able to handle their sleeves. In medical care, this is extremely important because the patients are possibly already in some pain. This study compares the performance of two separate ML methods and a simulation approach to the issue of wait-time prediction in digital healthcare environments. In order to match the best ML model with the simulation approach, a hybrid method was also introduced. The ML approaches used historical data of the patient queue to build a model for new patients who enter the queue to estimate the waiting time. The simulation algorithm imitates the queue in a simulated world and simulates time going forward to allocate a clinician to the new patient who enters the queue and thus creates a wait time assessment. As an additional feature for the best ML model, the simulation approach used the wait-time estimates provided by the simulation algorithm. The Machine Learning sequence modelling approach was implemented and defined by a Time Convolutional Network (TCN) model and a Long Short Term Memory Network (LSTM) model. The conventional approach to ML was implemented as a Random Forest Regressor (RF) model and a Support Vector Regressor (SVR) model. The exponential smoothing pre-processing technique was used to incorporate the temporal dimension into the conventional ML approach. The findings showed that all models vary statistically significantly. The TCN model and simulation algorithm had all individual models with the lowest mean square error (MSE). Compared to both conventional ML models, both sequence models had lower MSE. The MSE model had the lowest MSE of the whole and had both the ML and the simulation method the highest output characteristics. The hybrid model is however the most complex and thus needs the most maintenance." @default.
- W3134647486 created "2021-03-15" @default.
- W3134647486 creator A5032470713 @default.
- W3134647486 creator A5033622159 @default.
- W3134647486 creator A5051536803 @default.
- W3134647486 creator A5072884127 @default.
- W3134647486 date "2021-02-01" @default.
- W3134647486 modified "2023-10-12" @default.
- W3134647486 title "WITHDRAWN: A neural network based machine learning model in digital health care for wait-time prediction" @default.
- W3134647486 cites W2048763324 @default.
- W3134647486 cites W2155819330 @default.
- W3134647486 cites W2175227141 @default.
- W3134647486 cites W2766894798 @default.
- W3134647486 cites W2911964244 @default.
- W3134647486 cites W2967854445 @default.
- W3134647486 cites W3010674464 @default.
- W3134647486 doi "https://doi.org/10.1016/j.matpr.2021.01.195" @default.
- W3134647486 hasPublicationYear "2021" @default.
- W3134647486 type Work @default.
- W3134647486 sameAs 3134647486 @default.
- W3134647486 citedByCount "2" @default.
- W3134647486 countsByYear W31346474862022 @default.
- W3134647486 crossrefType "journal-article" @default.
- W3134647486 hasAuthorship W3134647486A5032470713 @default.
- W3134647486 hasAuthorship W3134647486A5033622159 @default.
- W3134647486 hasAuthorship W3134647486A5051536803 @default.
- W3134647486 hasAuthorship W3134647486A5072884127 @default.
- W3134647486 hasConcept C119857082 @default.
- W3134647486 hasConcept C133710760 @default.
- W3134647486 hasConcept C138885662 @default.
- W3134647486 hasConcept C147168706 @default.
- W3134647486 hasConcept C154945302 @default.
- W3134647486 hasConcept C160403385 @default.
- W3134647486 hasConcept C199360897 @default.
- W3134647486 hasConcept C26951474 @default.
- W3134647486 hasConcept C2776401178 @default.
- W3134647486 hasConcept C31972630 @default.
- W3134647486 hasConcept C3770464 @default.
- W3134647486 hasConcept C41008148 @default.
- W3134647486 hasConcept C41895202 @default.
- W3134647486 hasConcept C50644808 @default.
- W3134647486 hasConcept C81363708 @default.
- W3134647486 hasConceptScore W3134647486C119857082 @default.
- W3134647486 hasConceptScore W3134647486C133710760 @default.
- W3134647486 hasConceptScore W3134647486C138885662 @default.
- W3134647486 hasConceptScore W3134647486C147168706 @default.
- W3134647486 hasConceptScore W3134647486C154945302 @default.
- W3134647486 hasConceptScore W3134647486C160403385 @default.
- W3134647486 hasConceptScore W3134647486C199360897 @default.
- W3134647486 hasConceptScore W3134647486C26951474 @default.
- W3134647486 hasConceptScore W3134647486C2776401178 @default.
- W3134647486 hasConceptScore W3134647486C31972630 @default.
- W3134647486 hasConceptScore W3134647486C3770464 @default.
- W3134647486 hasConceptScore W3134647486C41008148 @default.
- W3134647486 hasConceptScore W3134647486C41895202 @default.
- W3134647486 hasConceptScore W3134647486C50644808 @default.
- W3134647486 hasConceptScore W3134647486C81363708 @default.
- W3134647486 hasLocation W31346474861 @default.
- W3134647486 hasOpenAccess W3134647486 @default.
- W3134647486 hasPrimaryLocation W31346474861 @default.
- W3134647486 hasRelatedWork W2047192456 @default.
- W3134647486 hasRelatedWork W2150861250 @default.
- W3134647486 hasRelatedWork W2337926734 @default.
- W3134647486 hasRelatedWork W2760085659 @default.
- W3134647486 hasRelatedWork W2768413403 @default.
- W3134647486 hasRelatedWork W3027997911 @default.
- W3134647486 hasRelatedWork W3112175042 @default.
- W3134647486 hasRelatedWork W3134647486 @default.
- W3134647486 hasRelatedWork W4287776258 @default.
- W3134647486 hasRelatedWork W1629725936 @default.
- W3134647486 isParatext "false" @default.
- W3134647486 isRetracted "true" @default.
- W3134647486 magId "3134647486" @default.
- W3134647486 workType "article" @default.