Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134670936> ?p ?o ?g. }
- W3134670936 endingPage "1882" @default.
- W3134670936 startingPage "1869" @default.
- W3134670936 abstract "Technological advances led to the generation of large scale complex data. Thus, extraction and retrieval of information to automatically discover latent pattern have been largely studied in the various domains of science and technology. Consequently, machine learning experienced tremendous development and various statistical approaches have been suggested. In particular, data clustering has received a lot of attention. Finite mixture models have been revealed to be one of the flexible and popular approaches in data clustering. Considering mixture models, three crucial aspects should be addressed. The first issue is choosing a distribution which is flexible enough to fit the data. In this paper, a model based on multivariate Beta distributions is proposed. The two other challenges in mixture models are estimation of model's parameters and model complexity. To tackle these challenges, variational inference techniques demonstrated considerable robustness. In this paper, two methods are studied, namely, batch and online variational inferences and the models are evaluated on four medical applications including image segmentation of colorectal cancer, multi-class colon tissue analysis, digital imaging in skin lesion diagnosis and computer aid detection of Malaria." @default.
- W3134670936 created "2021-03-15" @default.
- W3134670936 creator A5015717545 @default.
- W3134670936 creator A5090600716 @default.
- W3134670936 creator A5091833816 @default.
- W3134670936 date "2021-03-04" @default.
- W3134670936 modified "2023-10-14" @default.
- W3134670936 title "Online variational inference on finite multivariate Beta mixture models for medical applications" @default.
- W3134670936 cites W1901616594 @default.
- W3134670936 cites W1989387811 @default.
- W3134670936 cites W1991852795 @default.
- W3134670936 cites W2000545950 @default.
- W3134670936 cites W2005913992 @default.
- W3134670936 cites W2007819283 @default.
- W3134670936 cites W2007836898 @default.
- W3134670936 cites W2015245929 @default.
- W3134670936 cites W2019062120 @default.
- W3134670936 cites W2034838115 @default.
- W3134670936 cites W2080104526 @default.
- W3134670936 cites W2081578499 @default.
- W3134670936 cites W2096784803 @default.
- W3134670936 cites W2107551505 @default.
- W3134670936 cites W2124716447 @default.
- W3134670936 cites W2127498532 @default.
- W3134670936 cites W2133703553 @default.
- W3134670936 cites W2151103935 @default.
- W3134670936 cites W2165072487 @default.
- W3134670936 cites W2171911691 @default.
- W3134670936 cites W2425246132 @default.
- W3134670936 cites W2435090885 @default.
- W3134670936 cites W2565516711 @default.
- W3134670936 cites W2610332124 @default.
- W3134670936 cites W2664267452 @default.
- W3134670936 cites W2757028014 @default.
- W3134670936 cites W2760859903 @default.
- W3134670936 cites W2765571304 @default.
- W3134670936 cites W2767547957 @default.
- W3134670936 cites W2770146469 @default.
- W3134670936 cites W2783165089 @default.
- W3134670936 cites W2805029945 @default.
- W3134670936 cites W2884367402 @default.
- W3134670936 cites W2895844064 @default.
- W3134670936 cites W2896658870 @default.
- W3134670936 cites W2898947732 @default.
- W3134670936 cites W2903119292 @default.
- W3134670936 cites W2913240367 @default.
- W3134670936 cites W2913895065 @default.
- W3134670936 cites W2917675508 @default.
- W3134670936 cites W2918087949 @default.
- W3134670936 cites W2919115771 @default.
- W3134670936 cites W2944467232 @default.
- W3134670936 cites W2963901460 @default.
- W3134670936 cites W2964157630 @default.
- W3134670936 cites W2988916019 @default.
- W3134670936 cites W2989676862 @default.
- W3134670936 cites W3009082983 @default.
- W3134670936 cites W3098971646 @default.
- W3134670936 cites W3104087655 @default.
- W3134670936 cites W4212863985 @default.
- W3134670936 cites W4231665431 @default.
- W3134670936 doi "https://doi.org/10.1049/ipr2.12154" @default.
- W3134670936 hasPublicationYear "2021" @default.
- W3134670936 type Work @default.
- W3134670936 sameAs 3134670936 @default.
- W3134670936 citedByCount "11" @default.
- W3134670936 countsByYear W31346709362012 @default.
- W3134670936 countsByYear W31346709362021 @default.
- W3134670936 countsByYear W31346709362022 @default.
- W3134670936 countsByYear W31346709362023 @default.
- W3134670936 crossrefType "journal-article" @default.
- W3134670936 hasAuthorship W3134670936A5015717545 @default.
- W3134670936 hasAuthorship W3134670936A5090600716 @default.
- W3134670936 hasAuthorship W3134670936A5091833816 @default.
- W3134670936 hasBestOaLocation W31346709361 @default.
- W3134670936 hasConcept C104317684 @default.
- W3134670936 hasConcept C119857082 @default.
- W3134670936 hasConcept C124101348 @default.
- W3134670936 hasConcept C153180895 @default.
- W3134670936 hasConcept C154945302 @default.
- W3134670936 hasConcept C161584116 @default.
- W3134670936 hasConcept C185592680 @default.
- W3134670936 hasConcept C2776214188 @default.
- W3134670936 hasConcept C41008148 @default.
- W3134670936 hasConcept C55493867 @default.
- W3134670936 hasConcept C61224824 @default.
- W3134670936 hasConcept C63479239 @default.
- W3134670936 hasConcept C73555534 @default.
- W3134670936 hasConcept C89600930 @default.
- W3134670936 hasConceptScore W3134670936C104317684 @default.
- W3134670936 hasConceptScore W3134670936C119857082 @default.
- W3134670936 hasConceptScore W3134670936C124101348 @default.
- W3134670936 hasConceptScore W3134670936C153180895 @default.
- W3134670936 hasConceptScore W3134670936C154945302 @default.
- W3134670936 hasConceptScore W3134670936C161584116 @default.
- W3134670936 hasConceptScore W3134670936C185592680 @default.
- W3134670936 hasConceptScore W3134670936C2776214188 @default.
- W3134670936 hasConceptScore W3134670936C41008148 @default.
- W3134670936 hasConceptScore W3134670936C55493867 @default.