Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134691949> ?p ?o ?g. }
- W3134691949 endingPage "1832" @default.
- W3134691949 startingPage "1824" @default.
- W3134691949 abstract "Objective To create a personalised machine learning model for prediction of severe adverse neonatal outcomes (SANO) during the second stage of labour. Design Retrospective Electronic‐Medical‐Record (EMR) ‐based study. Population A cohort of 73 868 singleton, term deliveries that reached the second stage of labour, including 1346 (1.8%) deliveries with SANO. Methods A gradient boosting model was created, analysing 21 million data points from antepartum features (e.g. gravidity and parity) gathered at admission to the delivery unit, and intrapartum data (e.g. cervical dilatation and effacement) gathered during the first stage of labour. Deliveries were allocated to high‐risk and low‐risk groups based on the Youden index to maximise sensitivity and specificity. Main outcome measures SANO was defined as either umbilical cord pH levels ≤7.1 or 1‐minute or 5‐minute Apgar score ≤7. Results The model for prediction of SANO yielded an area under the receiver operating curve (AUC) of 0.761 (95% CI 0.748–0.774). A third of the cohort (33.5%, n = 24 721) were allocated to a high‐risk group for SANO, which captured up to 72.1% of these cases (odds ratio 5.3, 95% CI 4.7–6.0; high‐risk versus low‐risk groups). Conclusions Data acquired throughout the first stage of labour can be used to predict SANO during the second stage of labour using a machine learning model. Stratifying parturients at the beginning of the second stage of labour in a ‘time out’ session, can direct a personalised approach to management of this challenging aspect of labour, as well as improve allocation of staff and resources. Tweetable abstract Personalised prediction score for severe adverse neonatal outcomes in labour using machine learning model." @default.
- W3134691949 created "2021-03-15" @default.
- W3134691949 creator A5020039586 @default.
- W3134691949 creator A5025771443 @default.
- W3134691949 creator A5026287680 @default.
- W3134691949 creator A5035870247 @default.
- W3134691949 creator A5045233122 @default.
- W3134691949 creator A5049881670 @default.
- W3134691949 creator A5056692823 @default.
- W3134691949 creator A5059119329 @default.
- W3134691949 date "2021-04-15" @default.
- W3134691949 modified "2023-09-27" @default.
- W3134691949 title "Prediction of severe adverse neonatal outcomes at the second stage of labour using machine learning: a retrospective cohort study" @default.
- W3134691949 cites W1971025903 @default.
- W3134691949 cites W1984226174 @default.
- W3134691949 cites W1986714968 @default.
- W3134691949 cites W2012544935 @default.
- W3134691949 cites W2022958199 @default.
- W3134691949 cites W2038008094 @default.
- W3134691949 cites W2042571564 @default.
- W3134691949 cites W2118727855 @default.
- W3134691949 cites W2152575748 @default.
- W3134691949 cites W2172061782 @default.
- W3134691949 cites W2177870565 @default.
- W3134691949 cites W2207335547 @default.
- W3134691949 cites W2415088976 @default.
- W3134691949 cites W2487898712 @default.
- W3134691949 cites W2512587329 @default.
- W3134691949 cites W2515135816 @default.
- W3134691949 cites W2525984666 @default.
- W3134691949 cites W2532053961 @default.
- W3134691949 cites W2559769173 @default.
- W3134691949 cites W2671672656 @default.
- W3134691949 cites W2726264666 @default.
- W3134691949 cites W2789532840 @default.
- W3134691949 cites W2790442026 @default.
- W3134691949 cites W2791317386 @default.
- W3134691949 cites W2889056417 @default.
- W3134691949 cites W2901732428 @default.
- W3134691949 cites W2921763762 @default.
- W3134691949 cites W2922254661 @default.
- W3134691949 cites W2934399013 @default.
- W3134691949 cites W2943590224 @default.
- W3134691949 cites W2950391422 @default.
- W3134691949 cites W2970079774 @default.
- W3134691949 cites W2999615587 @default.
- W3134691949 cites W3003328981 @default.
- W3134691949 cites W3024677974 @default.
- W3134691949 cites W4233663140 @default.
- W3134691949 cites W61706512 @default.
- W3134691949 doi "https://doi.org/10.1111/1471-0528.16700" @default.
- W3134691949 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33713380" @default.
- W3134691949 hasPublicationYear "2021" @default.
- W3134691949 type Work @default.
- W3134691949 sameAs 3134691949 @default.
- W3134691949 citedByCount "3" @default.
- W3134691949 countsByYear W31346919492022 @default.
- W3134691949 countsByYear W31346919492023 @default.
- W3134691949 crossrefType "journal-article" @default.
- W3134691949 hasAuthorship W3134691949A5020039586 @default.
- W3134691949 hasAuthorship W3134691949A5025771443 @default.
- W3134691949 hasAuthorship W3134691949A5026287680 @default.
- W3134691949 hasAuthorship W3134691949A5035870247 @default.
- W3134691949 hasAuthorship W3134691949A5045233122 @default.
- W3134691949 hasAuthorship W3134691949A5049881670 @default.
- W3134691949 hasAuthorship W3134691949A5056692823 @default.
- W3134691949 hasAuthorship W3134691949A5059119329 @default.
- W3134691949 hasConcept C126322002 @default.
- W3134691949 hasConcept C131872663 @default.
- W3134691949 hasConcept C141071460 @default.
- W3134691949 hasConcept C156957248 @default.
- W3134691949 hasConcept C167135981 @default.
- W3134691949 hasConcept C201903717 @default.
- W3134691949 hasConcept C2778052368 @default.
- W3134691949 hasConcept C2779234561 @default.
- W3134691949 hasConcept C43346845 @default.
- W3134691949 hasConcept C54355233 @default.
- W3134691949 hasConcept C58471807 @default.
- W3134691949 hasConcept C66322754 @default.
- W3134691949 hasConcept C71924100 @default.
- W3134691949 hasConcept C72563966 @default.
- W3134691949 hasConcept C86803240 @default.
- W3134691949 hasConceptScore W3134691949C126322002 @default.
- W3134691949 hasConceptScore W3134691949C131872663 @default.
- W3134691949 hasConceptScore W3134691949C141071460 @default.
- W3134691949 hasConceptScore W3134691949C156957248 @default.
- W3134691949 hasConceptScore W3134691949C167135981 @default.
- W3134691949 hasConceptScore W3134691949C201903717 @default.
- W3134691949 hasConceptScore W3134691949C2778052368 @default.
- W3134691949 hasConceptScore W3134691949C2779234561 @default.
- W3134691949 hasConceptScore W3134691949C43346845 @default.
- W3134691949 hasConceptScore W3134691949C54355233 @default.
- W3134691949 hasConceptScore W3134691949C58471807 @default.
- W3134691949 hasConceptScore W3134691949C66322754 @default.
- W3134691949 hasConceptScore W3134691949C71924100 @default.
- W3134691949 hasConceptScore W3134691949C72563966 @default.
- W3134691949 hasConceptScore W3134691949C86803240 @default.
- W3134691949 hasIssue "11" @default.