Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134694538> ?p ?o ?g. }
- W3134694538 endingPage "44" @default.
- W3134694538 startingPage "38" @default.
- W3134694538 abstract "Rhabdomyolysis (RM) is a complex set of clinical syndromes involving the rapid dissolution of skeletal muscles. The early detection of patients who need renal replacement therapy (RRT) is very important and may aid in delivering proper care and optimizing the use of limited resources. Retrospective analyses of the following three databases were performed: the eICU Collaborative Research Database (eICU-CRD), the Medical Information Mart for Intensive Care III (MIMIC-III) database and electronic medical records from the First Medical Centre of the Chinese People's Liberation Army General Hospital (PLAGH). The data from the eICU-CRD and MIMIC-III datasets were merged to form the derivation cohort. The data collected from the Chinese PLAGH were used for external validation. The factors predictive of the need for RRT were selected using a LASSO regression analysis. A logistic regression was selected as the algorithm. The model was built in Python using the ML library scikit-learn. The accuracy of the model was measured by the area under the receiver operating characteristic curve (AUC). R software was used for the LASSO regression analysis, nomogram, concordance index, calibration, and decision and clinical impact curves. In total, 1259 patients with RM (614 patients from eICU-CRD, 324 patients from the MIMIC-III database and 321 patients from the Chinese PLAGH) were eligible for this analysis. The rate of RRT was 15.0% (92/614) in the eICU-CRD database, 17.6% (57/324) in the MIMIC-III database and 5.6% in the Chinese PLAGH (18/321). After the LASSO regression selection, eight variables were included in the RRT prediction model. The AUC of the model in the training dataset was 0.818 (95% CI 0.78–0.87), the AUC in the test dataset was 0.794 (95% CI 0.72–0.86), and the AUC in the Chinese PLAGH dataset (external validation dataset) was 0.820 (95% CI 0.70–0.86). We developed and validated a model for the early prediction of the RRT requirement among patients with RM based on 8 variables commonly measured during the first 24 h after admission. Predicting the need for RRT could help ensure appropriate treatment and facilitate the optimization of the use of medical resources." @default.
- W3134694538 created "2021-03-15" @default.
- W3134694538 creator A5002281342 @default.
- W3134694538 creator A5011869476 @default.
- W3134694538 creator A5025008858 @default.
- W3134694538 creator A5028296024 @default.
- W3134694538 creator A5029375932 @default.
- W3134694538 creator A5029815356 @default.
- W3134694538 creator A5040205037 @default.
- W3134694538 creator A5043267366 @default.
- W3134694538 creator A5068122140 @default.
- W3134694538 creator A5081020266 @default.
- W3134694538 date "2021-08-01" @default.
- W3134694538 modified "2023-10-03" @default.
- W3134694538 title "Development and validation of a model for the early prediction of the RRT requirement in patients with rhabdomyolysis" @default.
- W3134694538 cites W1898928487 @default.
- W3134694538 cites W1938284750 @default.
- W3134694538 cites W2011297686 @default.
- W3134694538 cites W2026274122 @default.
- W3134694538 cites W2033925475 @default.
- W3134694538 cites W2102556842 @default.
- W3134694538 cites W2127707288 @default.
- W3134694538 cites W2128530390 @default.
- W3134694538 cites W2128567539 @default.
- W3134694538 cites W2146081758 @default.
- W3134694538 cites W2151444324 @default.
- W3134694538 cites W2151591509 @default.
- W3134694538 cites W2156322330 @default.
- W3134694538 cites W2172568366 @default.
- W3134694538 cites W2346770762 @default.
- W3134694538 cites W2396881363 @default.
- W3134694538 cites W2410915840 @default.
- W3134694538 cites W2417116130 @default.
- W3134694538 cites W2751687314 @default.
- W3134694538 cites W2757504960 @default.
- W3134694538 cites W2891400669 @default.
- W3134694538 cites W2894202568 @default.
- W3134694538 cites W2917270873 @default.
- W3134694538 cites W2981376599 @default.
- W3134694538 cites W3011673030 @default.
- W3134694538 cites W3025610129 @default.
- W3134694538 cites W4206618939 @default.
- W3134694538 cites W4235843343 @default.
- W3134694538 cites W4361865037 @default.
- W3134694538 doi "https://doi.org/10.1016/j.ajem.2021.03.006" @default.
- W3134694538 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33714053" @default.
- W3134694538 hasPublicationYear "2021" @default.
- W3134694538 type Work @default.
- W3134694538 sameAs 3134694538 @default.
- W3134694538 citedByCount "2" @default.
- W3134694538 countsByYear W31346945382022 @default.
- W3134694538 countsByYear W31346945382023 @default.
- W3134694538 crossrefType "journal-article" @default.
- W3134694538 hasAuthorship W3134694538A5002281342 @default.
- W3134694538 hasAuthorship W3134694538A5011869476 @default.
- W3134694538 hasAuthorship W3134694538A5025008858 @default.
- W3134694538 hasAuthorship W3134694538A5028296024 @default.
- W3134694538 hasAuthorship W3134694538A5029375932 @default.
- W3134694538 hasAuthorship W3134694538A5029815356 @default.
- W3134694538 hasAuthorship W3134694538A5040205037 @default.
- W3134694538 hasAuthorship W3134694538A5043267366 @default.
- W3134694538 hasAuthorship W3134694538A5068122140 @default.
- W3134694538 hasAuthorship W3134694538A5081020266 @default.
- W3134694538 hasConcept C126322002 @default.
- W3134694538 hasConcept C136764020 @default.
- W3134694538 hasConcept C151956035 @default.
- W3134694538 hasConcept C160798450 @default.
- W3134694538 hasConcept C167135981 @default.
- W3134694538 hasConcept C194828623 @default.
- W3134694538 hasConcept C195910791 @default.
- W3134694538 hasConcept C2779541074 @default.
- W3134694538 hasConcept C34626388 @default.
- W3134694538 hasConcept C37616216 @default.
- W3134694538 hasConcept C41008148 @default.
- W3134694538 hasConcept C58471807 @default.
- W3134694538 hasConcept C71924100 @default.
- W3134694538 hasConcept C77088390 @default.
- W3134694538 hasConceptScore W3134694538C126322002 @default.
- W3134694538 hasConceptScore W3134694538C136764020 @default.
- W3134694538 hasConceptScore W3134694538C151956035 @default.
- W3134694538 hasConceptScore W3134694538C160798450 @default.
- W3134694538 hasConceptScore W3134694538C167135981 @default.
- W3134694538 hasConceptScore W3134694538C194828623 @default.
- W3134694538 hasConceptScore W3134694538C195910791 @default.
- W3134694538 hasConceptScore W3134694538C2779541074 @default.
- W3134694538 hasConceptScore W3134694538C34626388 @default.
- W3134694538 hasConceptScore W3134694538C37616216 @default.
- W3134694538 hasConceptScore W3134694538C41008148 @default.
- W3134694538 hasConceptScore W3134694538C58471807 @default.
- W3134694538 hasConceptScore W3134694538C71924100 @default.
- W3134694538 hasConceptScore W3134694538C77088390 @default.
- W3134694538 hasFunder F4320321001 @default.
- W3134694538 hasLocation W31346945381 @default.
- W3134694538 hasOpenAccess W3134694538 @default.
- W3134694538 hasPrimaryLocation W31346945381 @default.
- W3134694538 hasRelatedWork W3198039294 @default.
- W3134694538 hasRelatedWork W4224250568 @default.
- W3134694538 hasRelatedWork W4295067513 @default.