Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134700346> ?p ?o ?g. }
- W3134700346 abstract "In Bayesian applications, there is a huge interest in rapid and accurate estimation of the posterior distribution, particularly for high dimensional or hierarchical models. In this article, we propose to use optimization to solve for a joint distribution (random transport plan) between two random variables, $theta$ from the posterior distribution and $beta$ from the simple multivariate uniform. Specifically, we obtain an approximate estimate of the conditional distribution $Pi(betamid theta)$ as an infinite mixture of simple location-scale changes; applying the Bayes' theorem, $Pi(thetamidbeta)$ can be sampled as one of the reversed transforms from the uniform, with the weight proportional to the posterior density/mass function. This produces independent random samples with high approximation accuracy, as well as nice theoretic guarantees. Our method shows compelling advantages in performance and accuracy, compared to the state-of-the-art Markov chain Monte Carlo and approximations such as variational Bayes and normalizing flow. We illustrate this approach via several challenging applications, such as sampling from multi-modal distribution, estimating sparse signals in high dimension, and soft-thresholding of a graph with a prior on the degrees." @default.
- W3134700346 created "2021-03-15" @default.
- W3134700346 creator A5049615306 @default.
- W3134700346 date "2019-07-24" @default.
- W3134700346 modified "2023-09-27" @default.
- W3134700346 title "Transport Monte Carlo: High-Accuracy Posterior Approximation via Random Transport" @default.
- W3134700346 cites W1498632315 @default.
- W3134700346 cites W1522579744 @default.
- W3134700346 cites W1545319692 @default.
- W3134700346 cites W1959608418 @default.
- W3134700346 cites W1969415786 @default.
- W3134700346 cites W1973594349 @default.
- W3134700346 cites W1981576072 @default.
- W3134700346 cites W1983452151 @default.
- W3134700346 cites W1985093013 @default.
- W3134700346 cites W2009172320 @default.
- W3134700346 cites W2017791169 @default.
- W3134700346 cites W2023103251 @default.
- W3134700346 cites W2027449217 @default.
- W3134700346 cites W2067392831 @default.
- W3134700346 cites W2087767591 @default.
- W3134700346 cites W2114169935 @default.
- W3134700346 cites W2118036030 @default.
- W3134700346 cites W2136796925 @default.
- W3134700346 cites W2137576513 @default.
- W3134700346 cites W2149531814 @default.
- W3134700346 cites W2150149003 @default.
- W3134700346 cites W2158131535 @default.
- W3134700346 cites W2342070830 @default.
- W3134700346 cites W2416717089 @default.
- W3134700346 cites W2475483933 @default.
- W3134700346 cites W2478027467 @default.
- W3134700346 cites W2552233335 @default.
- W3134700346 cites W2587284713 @default.
- W3134700346 cites W2759407285 @default.
- W3134700346 cites W2795604964 @default.
- W3134700346 cites W2945278040 @default.
- W3134700346 cites W2962695743 @default.
- W3134700346 cites W2962887178 @default.
- W3134700346 cites W2963047245 @default.
- W3134700346 cites W2963047405 @default.
- W3134700346 cites W2963090522 @default.
- W3134700346 cites W2963139417 @default.
- W3134700346 cites W2963254535 @default.
- W3134700346 cites W2963736577 @default.
- W3134700346 cites W2963755523 @default.
- W3134700346 cites W2963849628 @default.
- W3134700346 cites W2964036097 @default.
- W3134700346 cites W2964121744 @default.
- W3134700346 cites W2970112944 @default.
- W3134700346 cites W2980069674 @default.
- W3134700346 cites W2980154272 @default.
- W3134700346 cites W3009330671 @default.
- W3134700346 cites W3028907532 @default.
- W3134700346 cites W3092772963 @default.
- W3134700346 cites W3099467939 @default.
- W3134700346 cites W3104370808 @default.
- W3134700346 cites W3104393726 @default.
- W3134700346 hasPublicationYear "2019" @default.
- W3134700346 type Work @default.
- W3134700346 sameAs 3134700346 @default.
- W3134700346 citedByCount "5" @default.
- W3134700346 countsByYear W31347003462019 @default.
- W3134700346 countsByYear W31347003462020 @default.
- W3134700346 countsByYear W31347003462021 @default.
- W3134700346 crossrefType "posted-content" @default.
- W3134700346 hasAuthorship W3134700346A5049615306 @default.
- W3134700346 hasConcept C105795698 @default.
- W3134700346 hasConcept C107673813 @default.
- W3134700346 hasConcept C111350023 @default.
- W3134700346 hasConcept C11413529 @default.
- W3134700346 hasConcept C121332964 @default.
- W3134700346 hasConcept C121864883 @default.
- W3134700346 hasConcept C177769412 @default.
- W3134700346 hasConcept C18653775 @default.
- W3134700346 hasConcept C19499675 @default.
- W3134700346 hasConcept C28826006 @default.
- W3134700346 hasConcept C33923547 @default.
- W3134700346 hasConcept C57830394 @default.
- W3134700346 hasConceptScore W3134700346C105795698 @default.
- W3134700346 hasConceptScore W3134700346C107673813 @default.
- W3134700346 hasConceptScore W3134700346C111350023 @default.
- W3134700346 hasConceptScore W3134700346C11413529 @default.
- W3134700346 hasConceptScore W3134700346C121332964 @default.
- W3134700346 hasConceptScore W3134700346C121864883 @default.
- W3134700346 hasConceptScore W3134700346C177769412 @default.
- W3134700346 hasConceptScore W3134700346C18653775 @default.
- W3134700346 hasConceptScore W3134700346C19499675 @default.
- W3134700346 hasConceptScore W3134700346C28826006 @default.
- W3134700346 hasConceptScore W3134700346C33923547 @default.
- W3134700346 hasConceptScore W3134700346C57830394 @default.
- W3134700346 hasLocation W31347003461 @default.
- W3134700346 hasOpenAccess W3134700346 @default.
- W3134700346 hasPrimaryLocation W31347003461 @default.
- W3134700346 hasRelatedWork W17512885 @default.
- W3134700346 hasRelatedWork W1762449885 @default.
- W3134700346 hasRelatedWork W2021637853 @default.
- W3134700346 hasRelatedWork W2123594237 @default.
- W3134700346 hasRelatedWork W2133370828 @default.
- W3134700346 hasRelatedWork W2257191720 @default.