Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134700476> ?p ?o ?g. }
- W3134700476 endingPage "895" @default.
- W3134700476 startingPage "881" @default.
- W3134700476 abstract "BACKGROUND: Doctors with various specializations and experience order brain computed tomography (CT) to rule out intracranial hemorrhage (ICH). Advanced artificial intelligence (AI) can discriminate subtypes of ICH with high accuracy. OBJECTIVE: The purpose of this study was to investigate the clinical usefulness of AI in ICH detection for doctors across a variety of specialties and backgrounds. METHODS: A total of 5702 patients’ brain CTs were used to develop a cascaded deep-learning-based automated segmentation algorithm (CDLA). A total of 38 doctors were recruited for testing and categorized into nine groups. Diagnostic time and accuracy were evaluated for doctors with and without assistance from the CDLA. RESULTS: The CDLA in the validation set for differential diagnoses among a negative finding and five subtypes of ICH revealed an AUC of 0.966 (95% CI, 0.955–0.977). Specific doctor groups, such as interns, internal medicine, pediatrics, and emergency junior residents, showed significant improvement with assistance from the CDLA (p= 0.029). However, the CDLA did not show a reduction in the mean diagnostic time. CONCLUSIONS: Even though the CDLA may not reduce diagnostic time for ICH detection, unlike our expectation, it can play a role in improving diagnostic accuracy in specific doctor groups." @default.
- W3134700476 created "2021-03-15" @default.
- W3134700476 creator A5002651999 @default.
- W3134700476 creator A5015101690 @default.
- W3134700476 creator A5015867627 @default.
- W3134700476 creator A5017074883 @default.
- W3134700476 creator A5023165018 @default.
- W3134700476 creator A5031370249 @default.
- W3134700476 creator A5033065675 @default.
- W3134700476 creator A5037365628 @default.
- W3134700476 creator A5038559731 @default.
- W3134700476 creator A5054320294 @default.
- W3134700476 creator A5058452236 @default.
- W3134700476 creator A5059470260 @default.
- W3134700476 creator A5068680051 @default.
- W3134700476 creator A5072091183 @default.
- W3134700476 creator A5074823206 @default.
- W3134700476 creator A5080209414 @default.
- W3134700476 date "2021-09-06" @default.
- W3134700476 modified "2023-10-16" @default.
- W3134700476 title "Clinical usefulness of deep learning-based automated segmentation in intracranial hemorrhage" @default.
- W3134700476 cites W1991964403 @default.
- W3134700476 cites W2005697477 @default.
- W3134700476 cites W2025313184 @default.
- W3134700476 cites W2131130086 @default.
- W3134700476 cites W2148534328 @default.
- W3134700476 cites W2563049376 @default.
- W3134700476 cites W2563701462 @default.
- W3134700476 cites W2604192360 @default.
- W3134700476 cites W2795774310 @default.
- W3134700476 cites W2883545264 @default.
- W3134700476 cites W2896817483 @default.
- W3134700476 cites W2900981882 @default.
- W3134700476 cites W2911997543 @default.
- W3134700476 cites W2948346016 @default.
- W3134700476 cites W2988963 @default.
- W3134700476 cites W4211064847 @default.
- W3134700476 doi "https://doi.org/10.3233/thc-202533" @default.
- W3134700476 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33682736" @default.
- W3134700476 hasPublicationYear "2021" @default.
- W3134700476 type Work @default.
- W3134700476 sameAs 3134700476 @default.
- W3134700476 citedByCount "3" @default.
- W3134700476 countsByYear W31347004762021 @default.
- W3134700476 countsByYear W31347004762022 @default.
- W3134700476 countsByYear W31347004762023 @default.
- W3134700476 crossrefType "journal-article" @default.
- W3134700476 hasAuthorship W3134700476A5002651999 @default.
- W3134700476 hasAuthorship W3134700476A5015101690 @default.
- W3134700476 hasAuthorship W3134700476A5015867627 @default.
- W3134700476 hasAuthorship W3134700476A5017074883 @default.
- W3134700476 hasAuthorship W3134700476A5023165018 @default.
- W3134700476 hasAuthorship W3134700476A5031370249 @default.
- W3134700476 hasAuthorship W3134700476A5033065675 @default.
- W3134700476 hasAuthorship W3134700476A5037365628 @default.
- W3134700476 hasAuthorship W3134700476A5038559731 @default.
- W3134700476 hasAuthorship W3134700476A5054320294 @default.
- W3134700476 hasAuthorship W3134700476A5058452236 @default.
- W3134700476 hasAuthorship W3134700476A5059470260 @default.
- W3134700476 hasAuthorship W3134700476A5068680051 @default.
- W3134700476 hasAuthorship W3134700476A5072091183 @default.
- W3134700476 hasAuthorship W3134700476A5074823206 @default.
- W3134700476 hasAuthorship W3134700476A5080209414 @default.
- W3134700476 hasConcept C119857082 @default.
- W3134700476 hasConcept C126838900 @default.
- W3134700476 hasConcept C154945302 @default.
- W3134700476 hasConcept C19527891 @default.
- W3134700476 hasConcept C3020132585 @default.
- W3134700476 hasConcept C41008148 @default.
- W3134700476 hasConcept C534262118 @default.
- W3134700476 hasConcept C544519230 @default.
- W3134700476 hasConcept C71924100 @default.
- W3134700476 hasConcept C89600930 @default.
- W3134700476 hasConceptScore W3134700476C119857082 @default.
- W3134700476 hasConceptScore W3134700476C126838900 @default.
- W3134700476 hasConceptScore W3134700476C154945302 @default.
- W3134700476 hasConceptScore W3134700476C19527891 @default.
- W3134700476 hasConceptScore W3134700476C3020132585 @default.
- W3134700476 hasConceptScore W3134700476C41008148 @default.
- W3134700476 hasConceptScore W3134700476C534262118 @default.
- W3134700476 hasConceptScore W3134700476C544519230 @default.
- W3134700476 hasConceptScore W3134700476C71924100 @default.
- W3134700476 hasConceptScore W3134700476C89600930 @default.
- W3134700476 hasIssue "5" @default.
- W3134700476 hasLocation W31347004761 @default.
- W3134700476 hasOpenAccess W3134700476 @default.
- W3134700476 hasPrimaryLocation W31347004761 @default.
- W3134700476 hasRelatedWork W1910186363 @default.
- W3134700476 hasRelatedWork W2003211637 @default.
- W3134700476 hasRelatedWork W2068929335 @default.
- W3134700476 hasRelatedWork W2105827888 @default.
- W3134700476 hasRelatedWork W2403777530 @default.
- W3134700476 hasRelatedWork W2411681074 @default.
- W3134700476 hasRelatedWork W2943842647 @default.
- W3134700476 hasRelatedWork W3080395702 @default.
- W3134700476 hasRelatedWork W4210389441 @default.
- W3134700476 hasRelatedWork W4249377076 @default.
- W3134700476 hasVolume "29" @default.