Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134716880> ?p ?o ?g. }
- W3134716880 endingPage "36897" @default.
- W3134716880 startingPage "36879" @default.
- W3134716880 abstract "Dyslexia is a neurological disorder that is characterized by imprecise comprehension of words and generally poor reading performance. It affects a significant population of school-age children, with more occurrences in males, thus, putting them at risk of poor academic performance and low self-esteem for a lifetime. The long-term hope is to have a dyslexia diagnostic method that is informed by neural-biomarkers. In this regard, large numbers of machine learning methods and, more recently, deep learning methods have been implemented across various types of dataset with the above-chance classification accuracy. However, attainment of clinical acceptability of these state-of-the-art methods is bedeviled by certain challenges including lack of biologically-interpretable biomarkers, privacy of dataset and classifiers, hyper-parameter selection/optimization, and overfitting problem among others. This review paper critically analyzes recent machine learning methods for detecting dyslexia and its biomarkers and discusses challenges that require proper attentions from the users of deep learning methods in order to enable them to attain clinically relevance and acceptable level. The review is conducted within the premise of implementation and experimental outcomes for each of the 22 selected articles using the Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) protocol, with a view to outlining some critical challenges for achieving high accuracy and reliability of the state-of-the-art machine learning methods. As an evidence-based protocol for reporting in systematic reviews and meta-analyses, PRISMA helps to ensure clarity and transparency of this paper by showing a four-phase flow diagram of the selection process for articles used in this review. It is therefore, envisaged that higher classification performance of clinical relevance can be achieved using deep learning models for dyslexia and its biomarkers by addressing identified potential challenges." @default.
- W3134716880 created "2021-03-15" @default.
- W3134716880 creator A5052173309 @default.
- W3134716880 creator A5070390862 @default.
- W3134716880 creator A5079386779 @default.
- W3134716880 creator A5080629453 @default.
- W3134716880 date "2021-01-01" @default.
- W3134716880 modified "2023-10-15" @default.
- W3134716880 title "Advance Machine Learning Methods for Dyslexia Biomarker Detection: A Review of Implementation Details and Challenges" @default.
- W3134716880 cites W1434354835 @default.
- W3134716880 cites W1494517475 @default.
- W3134716880 cites W1571249459 @default.
- W3134716880 cites W1578519321 @default.
- W3134716880 cites W1742694218 @default.
- W3134716880 cites W1975347625 @default.
- W3134716880 cites W1985501125 @default.
- W3134716880 cites W1988875430 @default.
- W3134716880 cites W1996898587 @default.
- W3134716880 cites W2007740465 @default.
- W3134716880 cites W2008526704 @default.
- W3134716880 cites W2038192944 @default.
- W3134716880 cites W2047872411 @default.
- W3134716880 cites W2059617067 @default.
- W3134716880 cites W2068792891 @default.
- W3134716880 cites W2068971446 @default.
- W3134716880 cites W2077995708 @default.
- W3134716880 cites W2080451857 @default.
- W3134716880 cites W2087796271 @default.
- W3134716880 cites W2092138534 @default.
- W3134716880 cites W2100191005 @default.
- W3134716880 cites W2106911021 @default.
- W3134716880 cites W2119848633 @default.
- W3134716880 cites W2126597536 @default.
- W3134716880 cites W2134400485 @default.
- W3134716880 cites W2143198639 @default.
- W3134716880 cites W2150667092 @default.
- W3134716880 cites W2162615325 @default.
- W3134716880 cites W2171429878 @default.
- W3134716880 cites W2208053283 @default.
- W3134716880 cites W2262195278 @default.
- W3134716880 cites W2329324077 @default.
- W3134716880 cites W237784324 @default.
- W3134716880 cites W2529833540 @default.
- W3134716880 cites W2541889593 @default.
- W3134716880 cites W2606651086 @default.
- W3134716880 cites W2608651006 @default.
- W3134716880 cites W2735804555 @default.
- W3134716880 cites W2744994535 @default.
- W3134716880 cites W275454511 @default.
- W3134716880 cites W2766142123 @default.
- W3134716880 cites W2768956845 @default.
- W3134716880 cites W2769463124 @default.
- W3134716880 cites W2770696648 @default.
- W3134716880 cites W2783326200 @default.
- W3134716880 cites W2798437997 @default.
- W3134716880 cites W2798972583 @default.
- W3134716880 cites W2804824939 @default.
- W3134716880 cites W2808108733 @default.
- W3134716880 cites W2811980879 @default.
- W3134716880 cites W2902255491 @default.
- W3134716880 cites W2952827873 @default.
- W3134716880 cites W2964292554 @default.
- W3134716880 cites W2971122390 @default.
- W3134716880 cites W2981318525 @default.
- W3134716880 cites W2992806896 @default.
- W3134716880 cites W3005906226 @default.
- W3134716880 cites W3026796362 @default.
- W3134716880 cites W3029652632 @default.
- W3134716880 cites W3031132020 @default.
- W3134716880 cites W3034023751 @default.
- W3134716880 cites W3080168576 @default.
- W3134716880 cites W3091780972 @default.
- W3134716880 cites W3091936762 @default.
- W3134716880 cites W3105282616 @default.
- W3134716880 doi "https://doi.org/10.1109/access.2021.3062709" @default.
- W3134716880 hasPublicationYear "2021" @default.
- W3134716880 type Work @default.
- W3134716880 sameAs 3134716880 @default.
- W3134716880 citedByCount "27" @default.
- W3134716880 countsByYear W31347168802021 @default.
- W3134716880 countsByYear W31347168802022 @default.
- W3134716880 countsByYear W31347168802023 @default.
- W3134716880 crossrefType "journal-article" @default.
- W3134716880 hasAuthorship W3134716880A5052173309 @default.
- W3134716880 hasAuthorship W3134716880A5070390862 @default.
- W3134716880 hasAuthorship W3134716880A5079386779 @default.
- W3134716880 hasAuthorship W3134716880A5080629453 @default.
- W3134716880 hasBestOaLocation W31347168801 @default.
- W3134716880 hasConcept C108583219 @default.
- W3134716880 hasConcept C119857082 @default.
- W3134716880 hasConcept C142724271 @default.
- W3134716880 hasConcept C154945302 @default.
- W3134716880 hasConcept C17744445 @default.
- W3134716880 hasConcept C185592680 @default.
- W3134716880 hasConcept C189708586 @default.
- W3134716880 hasConcept C199539241 @default.
- W3134716880 hasConcept C204787440 @default.
- W3134716880 hasConcept C22019652 @default.