Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134723610> ?p ?o ?g. }
- W3134723610 endingPage "107266" @default.
- W3134723610 startingPage "107266" @default.
- W3134723610 abstract "Abstract Optimization-based methods for output-feedback control enable dealing with multiple-input and multiple-output nonlinear systems in the presence of uncertainties and constraints. The combination of moving horizon estimation (MHE) and nonlinear model predictive control (NMPC) can be especially powerful because of its general formulation but its implementation requires solving two optimization problems at every sampling instant, which can be challenging due to hardware or time constraints. We propose to take advantage of the expressive capabilities of deep neural networks to approximate the solution of the MHE and NMPC problems. By substituting the MHE and NMPC with their learning-based counterparts, the required online computations are significantly reduced. We also propose to use sensitivity analysis to compute an approximate upper-bound of the maximum one-step divergence from the optimal performance caused by the approximation error. The efficacy of the proposed learning-based approach is illustrated with simulation results of a semi-batch reactor for industrial polymerization." @default.
- W3134723610 created "2021-03-15" @default.
- W3134723610 creator A5052312024 @default.
- W3134723610 creator A5061435289 @default.
- W3134723610 date "2021-05-01" @default.
- W3134723610 modified "2023-10-16" @default.
- W3134723610 title "Approximate moving horizon estimation and robust nonlinear model predictive control via deep learning" @default.
- W3134723610 cites W1981723834 @default.
- W3134723610 cites W1986296919 @default.
- W3134723610 cites W1993170675 @default.
- W3134723610 cites W2007113535 @default.
- W3134723610 cites W2007921211 @default.
- W3134723610 cites W2026903670 @default.
- W3134723610 cites W2039799007 @default.
- W3134723610 cites W2061757541 @default.
- W3134723610 cites W2067716288 @default.
- W3134723610 cites W2123871098 @default.
- W3134723610 cites W2164957979 @default.
- W3134723610 cites W2166751342 @default.
- W3134723610 cites W2563700852 @default.
- W3134723610 cites W2564145630 @default.
- W3134723610 cites W2806096672 @default.
- W3134723610 cites W2810195925 @default.
- W3134723610 cites W2820700944 @default.
- W3134723610 cites W2842089854 @default.
- W3134723610 cites W2897541745 @default.
- W3134723610 cites W2897660596 @default.
- W3134723610 cites W2900535078 @default.
- W3134723610 cites W2901291754 @default.
- W3134723610 cites W3007985585 @default.
- W3134723610 cites W3044031386 @default.
- W3134723610 cites W3101479673 @default.
- W3134723610 cites W3102852010 @default.
- W3134723610 doi "https://doi.org/10.1016/j.compchemeng.2021.107266" @default.
- W3134723610 hasPublicationYear "2021" @default.
- W3134723610 type Work @default.
- W3134723610 sameAs 3134723610 @default.
- W3134723610 citedByCount "21" @default.
- W3134723610 countsByYear W31347236102020 @default.
- W3134723610 countsByYear W31347236102021 @default.
- W3134723610 countsByYear W31347236102022 @default.
- W3134723610 countsByYear W31347236102023 @default.
- W3134723610 crossrefType "journal-article" @default.
- W3134723610 hasAuthorship W3134723610A5052312024 @default.
- W3134723610 hasAuthorship W3134723610A5061435289 @default.
- W3134723610 hasConcept C121332964 @default.
- W3134723610 hasConcept C126255220 @default.
- W3134723610 hasConcept C127413603 @default.
- W3134723610 hasConcept C154945302 @default.
- W3134723610 hasConcept C157286648 @default.
- W3134723610 hasConcept C158622935 @default.
- W3134723610 hasConcept C159176650 @default.
- W3134723610 hasConcept C172205157 @default.
- W3134723610 hasConcept C201995342 @default.
- W3134723610 hasConcept C206833254 @default.
- W3134723610 hasConcept C2524010 @default.
- W3134723610 hasConcept C2775924081 @default.
- W3134723610 hasConcept C2984755018 @default.
- W3134723610 hasConcept C33923547 @default.
- W3134723610 hasConcept C41008148 @default.
- W3134723610 hasConcept C47446073 @default.
- W3134723610 hasConcept C50050547 @default.
- W3134723610 hasConcept C62520636 @default.
- W3134723610 hasConcept C96250715 @default.
- W3134723610 hasConceptScore W3134723610C121332964 @default.
- W3134723610 hasConceptScore W3134723610C126255220 @default.
- W3134723610 hasConceptScore W3134723610C127413603 @default.
- W3134723610 hasConceptScore W3134723610C154945302 @default.
- W3134723610 hasConceptScore W3134723610C157286648 @default.
- W3134723610 hasConceptScore W3134723610C158622935 @default.
- W3134723610 hasConceptScore W3134723610C159176650 @default.
- W3134723610 hasConceptScore W3134723610C172205157 @default.
- W3134723610 hasConceptScore W3134723610C201995342 @default.
- W3134723610 hasConceptScore W3134723610C206833254 @default.
- W3134723610 hasConceptScore W3134723610C2524010 @default.
- W3134723610 hasConceptScore W3134723610C2775924081 @default.
- W3134723610 hasConceptScore W3134723610C2984755018 @default.
- W3134723610 hasConceptScore W3134723610C33923547 @default.
- W3134723610 hasConceptScore W3134723610C41008148 @default.
- W3134723610 hasConceptScore W3134723610C47446073 @default.
- W3134723610 hasConceptScore W3134723610C50050547 @default.
- W3134723610 hasConceptScore W3134723610C62520636 @default.
- W3134723610 hasConceptScore W3134723610C96250715 @default.
- W3134723610 hasFunder F4320320879 @default.
- W3134723610 hasLocation W31347236101 @default.
- W3134723610 hasOpenAccess W3134723610 @default.
- W3134723610 hasPrimaryLocation W31347236101 @default.
- W3134723610 hasRelatedWork W1546003646 @default.
- W3134723610 hasRelatedWork W1556500416 @default.
- W3134723610 hasRelatedWork W2061446978 @default.
- W3134723610 hasRelatedWork W2356710096 @default.
- W3134723610 hasRelatedWork W2911495738 @default.
- W3134723610 hasRelatedWork W3134723610 @default.
- W3134723610 hasRelatedWork W4214832133 @default.
- W3134723610 hasRelatedWork W4280594855 @default.
- W3134723610 hasRelatedWork W4298440321 @default.
- W3134723610 hasRelatedWork W4302936544 @default.
- W3134723610 hasVolume "148" @default.