Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134725013> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3134725013 endingPage "012072" @default.
- W3134725013 startingPage "012072" @default.
- W3134725013 abstract "Abstract An outbreak of the 2019 novel Coronavirus epidemic (COVID-19) has rapidly spread worldwide. The coronavirus (COVID-19) has also spread among children, but it has been less severe than in adults. The characteristics of COVID-19 laboratory findings play a significant role in clinical manifestations, diagnosis, and treatment. Since the numbers of COVID-19 cases increased, it takes more time to interpret the lab outcomes and provide an accurate diagnosis. Little information about the clinical symptoms and epidemiological of COVID-19 is known. There is a need to investigate the characteristics of laboratory findings for the clinical decision-making system using predictive algorithms. This study aims to classify and validate machine learning approaches for detecting COVID-19 in children. The five well-known machine learning approaches: the artificial neural network (ANN); random forest (RF); support vector machines (SVM); decision trees (DT) which include classification and regression trees (CART); and gradient boosted trees (GBM) were used. All these approaches have been considered in the classification, and to determine the most suitable model. The performance of each model test was by conducted using a standard 10-fold cross-validation procedure. Given these results for classification performance and prediction of accuracy, CART is the best predictive model for classifications for children with COVID-19. The results of the study illustrate that the best classification performance was achieved with CART model to provide 92.5% accuracy for binary classes (positive vs. negative) based on laboratory findings. Leukocytes, Monocytes, Potassium, and Eosinophils, were among the most important predictors which indicate that those features may play a crucial role in COVID-19. Ultimately, our model may be helpful for medical experts to predict COVID-19 and can help invalidate their primary laboratory findings of children. ML methods can be a convenient tool for providing predictions for COVID-19 laboratory findings among Children." @default.
- W3134725013 created "2021-03-15" @default.
- W3134725013 creator A5001773628 @default.
- W3134725013 creator A5014692416 @default.
- W3134725013 creator A5040331883 @default.
- W3134725013 creator A5048933669 @default.
- W3134725013 creator A5076294719 @default.
- W3134725013 date "2021-02-01" @default.
- W3134725013 modified "2023-09-27" @default.
- W3134725013 title "Evaluation of Machine Learning Models to Forecast COVID-19 Relying on Laboratory Outcomes Characteristics in Children" @default.
- W3134725013 cites W2062930223 @default.
- W3134725013 cites W2123774149 @default.
- W3134725013 cites W2603678388 @default.
- W3134725013 cites W2664267452 @default.
- W3134725013 cites W2793981925 @default.
- W3134725013 cites W2884775595 @default.
- W3134725013 cites W2932522561 @default.
- W3134725013 cites W3006645647 @default.
- W3134725013 cites W3009567932 @default.
- W3134725013 cites W3012083138 @default.
- W3134725013 cites W3014289208 @default.
- W3134725013 cites W3019457420 @default.
- W3134725013 cites W3030419021 @default.
- W3134725013 doi "https://doi.org/10.1088/1757-899x/1094/1/012072" @default.
- W3134725013 hasPublicationYear "2021" @default.
- W3134725013 type Work @default.
- W3134725013 sameAs 3134725013 @default.
- W3134725013 citedByCount "1" @default.
- W3134725013 countsByYear W31347250132023 @default.
- W3134725013 crossrefType "journal-article" @default.
- W3134725013 hasAuthorship W3134725013A5001773628 @default.
- W3134725013 hasAuthorship W3134725013A5014692416 @default.
- W3134725013 hasAuthorship W3134725013A5040331883 @default.
- W3134725013 hasAuthorship W3134725013A5048933669 @default.
- W3134725013 hasAuthorship W3134725013A5076294719 @default.
- W3134725013 hasBestOaLocation W31347250131 @default.
- W3134725013 hasConcept C105795698 @default.
- W3134725013 hasConcept C119857082 @default.
- W3134725013 hasConcept C12267149 @default.
- W3134725013 hasConcept C127413603 @default.
- W3134725013 hasConcept C142724271 @default.
- W3134725013 hasConcept C154945302 @default.
- W3134725013 hasConcept C169258074 @default.
- W3134725013 hasConcept C2777275308 @default.
- W3134725013 hasConcept C2779134260 @default.
- W3134725013 hasConcept C3008058167 @default.
- W3134725013 hasConcept C33923547 @default.
- W3134725013 hasConcept C41008148 @default.
- W3134725013 hasConcept C45804977 @default.
- W3134725013 hasConcept C50644808 @default.
- W3134725013 hasConcept C524204448 @default.
- W3134725013 hasConcept C66905080 @default.
- W3134725013 hasConcept C71924100 @default.
- W3134725013 hasConcept C78519656 @default.
- W3134725013 hasConcept C83546350 @default.
- W3134725013 hasConcept C84525736 @default.
- W3134725013 hasConceptScore W3134725013C105795698 @default.
- W3134725013 hasConceptScore W3134725013C119857082 @default.
- W3134725013 hasConceptScore W3134725013C12267149 @default.
- W3134725013 hasConceptScore W3134725013C127413603 @default.
- W3134725013 hasConceptScore W3134725013C142724271 @default.
- W3134725013 hasConceptScore W3134725013C154945302 @default.
- W3134725013 hasConceptScore W3134725013C169258074 @default.
- W3134725013 hasConceptScore W3134725013C2777275308 @default.
- W3134725013 hasConceptScore W3134725013C2779134260 @default.
- W3134725013 hasConceptScore W3134725013C3008058167 @default.
- W3134725013 hasConceptScore W3134725013C33923547 @default.
- W3134725013 hasConceptScore W3134725013C41008148 @default.
- W3134725013 hasConceptScore W3134725013C45804977 @default.
- W3134725013 hasConceptScore W3134725013C50644808 @default.
- W3134725013 hasConceptScore W3134725013C524204448 @default.
- W3134725013 hasConceptScore W3134725013C66905080 @default.
- W3134725013 hasConceptScore W3134725013C71924100 @default.
- W3134725013 hasConceptScore W3134725013C78519656 @default.
- W3134725013 hasConceptScore W3134725013C83546350 @default.
- W3134725013 hasConceptScore W3134725013C84525736 @default.
- W3134725013 hasIssue "1" @default.
- W3134725013 hasLocation W31347250131 @default.
- W3134725013 hasOpenAccess W3134725013 @default.
- W3134725013 hasPrimaryLocation W31347250131 @default.
- W3134725013 hasRelatedWork W3134725013 @default.
- W3134725013 hasRelatedWork W3195168932 @default.
- W3134725013 hasRelatedWork W4308191010 @default.
- W3134725013 hasRelatedWork W4321636153 @default.
- W3134725013 hasRelatedWork W4377964522 @default.
- W3134725013 hasRelatedWork W4381414210 @default.
- W3134725013 hasRelatedWork W4383535405 @default.
- W3134725013 hasRelatedWork W4384345534 @default.
- W3134725013 hasRelatedWork W4386072274 @default.
- W3134725013 hasRelatedWork W4386123260 @default.
- W3134725013 hasVolume "1094" @default.
- W3134725013 isParatext "false" @default.
- W3134725013 isRetracted "false" @default.
- W3134725013 magId "3134725013" @default.
- W3134725013 workType "article" @default.