Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134730085> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3134730085 endingPage "103" @default.
- W3134730085 startingPage "90" @default.
- W3134730085 abstract "Electricity demand and supply is a very crucial amenity in running the day to day activities of organizations, business enterprises, government, household, social functions, etc. in the twenty first century. Too much supply of electricity causes wastages and too little causes loss. Forecasting electric load demand is vital as it provides an avenue to reduce wastages and loss on the part of any system that depends upon it in her daily activities. In this paper, an attempt is made to forecast the monthly electric load demand of an automobile assembly plant by the application of hybrid Nonlinear Autoregressive Neural Network with Exogenous Inputs and Genetic Algorithm (NARX-GA). The data set consisted of monthly historical data of Electric Load Demand, Temperature, Relative Humidity and Production records for nineteen years from the year 2000 to 2018. The result from the simulation gave a mean average percentage error (MAPE) of 0.56%. The use of Non Linear Autoregressive Neural Network with Exogenous Inputs and Genetic Algorithm (NARX-GA) optimized models should be encouraged in Utility industries to enhance decision making and planning purposes especially in a deregulated economy." @default.
- W3134730085 created "2021-03-15" @default.
- W3134730085 creator A5009744274 @default.
- W3134730085 creator A5022538225 @default.
- W3134730085 creator A5025742779 @default.
- W3134730085 creator A5038042513 @default.
- W3134730085 creator A5080046961 @default.
- W3134730085 creator A5081827846 @default.
- W3134730085 creator A5088926725 @default.
- W3134730085 date "2020-03-18" @default.
- W3134730085 modified "2023-09-27" @default.
- W3134730085 title "Forecasting Electric Load Demand Using Hybrid Nonlinear Autoregressive Neural Network with Exogenous inputs and Genetic Algorithm" @default.
- W3134730085 hasPublicationYear "2020" @default.
- W3134730085 type Work @default.
- W3134730085 sameAs 3134730085 @default.
- W3134730085 citedByCount "0" @default.
- W3134730085 crossrefType "journal-article" @default.
- W3134730085 hasAuthorship W3134730085A5009744274 @default.
- W3134730085 hasAuthorship W3134730085A5022538225 @default.
- W3134730085 hasAuthorship W3134730085A5025742779 @default.
- W3134730085 hasAuthorship W3134730085A5038042513 @default.
- W3134730085 hasAuthorship W3134730085A5080046961 @default.
- W3134730085 hasAuthorship W3134730085A5081827846 @default.
- W3134730085 hasAuthorship W3134730085A5088926725 @default.
- W3134730085 hasConcept C119599485 @default.
- W3134730085 hasConcept C119857082 @default.
- W3134730085 hasConcept C127413603 @default.
- W3134730085 hasConcept C149782125 @default.
- W3134730085 hasConcept C154945302 @default.
- W3134730085 hasConcept C159877910 @default.
- W3134730085 hasConcept C162324750 @default.
- W3134730085 hasConcept C165801399 @default.
- W3134730085 hasConcept C193809577 @default.
- W3134730085 hasConcept C206658404 @default.
- W3134730085 hasConcept C41008148 @default.
- W3134730085 hasConcept C42475967 @default.
- W3134730085 hasConcept C42536954 @default.
- W3134730085 hasConcept C50644808 @default.
- W3134730085 hasConcept C77715397 @default.
- W3134730085 hasConcept C8880873 @default.
- W3134730085 hasConceptScore W3134730085C119599485 @default.
- W3134730085 hasConceptScore W3134730085C119857082 @default.
- W3134730085 hasConceptScore W3134730085C127413603 @default.
- W3134730085 hasConceptScore W3134730085C149782125 @default.
- W3134730085 hasConceptScore W3134730085C154945302 @default.
- W3134730085 hasConceptScore W3134730085C159877910 @default.
- W3134730085 hasConceptScore W3134730085C162324750 @default.
- W3134730085 hasConceptScore W3134730085C165801399 @default.
- W3134730085 hasConceptScore W3134730085C193809577 @default.
- W3134730085 hasConceptScore W3134730085C206658404 @default.
- W3134730085 hasConceptScore W3134730085C41008148 @default.
- W3134730085 hasConceptScore W3134730085C42475967 @default.
- W3134730085 hasConceptScore W3134730085C42536954 @default.
- W3134730085 hasConceptScore W3134730085C50644808 @default.
- W3134730085 hasConceptScore W3134730085C77715397 @default.
- W3134730085 hasConceptScore W3134730085C8880873 @default.
- W3134730085 hasIssue "2" @default.
- W3134730085 hasLocation W31347300851 @default.
- W3134730085 hasOpenAccess W3134730085 @default.
- W3134730085 hasPrimaryLocation W31347300851 @default.
- W3134730085 hasRelatedWork W1511501560 @default.
- W3134730085 hasRelatedWork W1982039941 @default.
- W3134730085 hasRelatedWork W1984452465 @default.
- W3134730085 hasRelatedWork W2000484493 @default.
- W3134730085 hasRelatedWork W2018915553 @default.
- W3134730085 hasRelatedWork W2092204819 @default.
- W3134730085 hasRelatedWork W2100635161 @default.
- W3134730085 hasRelatedWork W2376232521 @default.
- W3134730085 hasRelatedWork W2409478628 @default.
- W3134730085 hasRelatedWork W2511753245 @default.
- W3134730085 hasRelatedWork W2539662909 @default.
- W3134730085 hasRelatedWork W2565831992 @default.
- W3134730085 hasRelatedWork W2566225477 @default.
- W3134730085 hasRelatedWork W2568170941 @default.
- W3134730085 hasRelatedWork W2917314056 @default.
- W3134730085 hasRelatedWork W3003799075 @default.
- W3134730085 hasRelatedWork W3081521722 @default.
- W3134730085 hasRelatedWork W3165094362 @default.
- W3134730085 hasRelatedWork W3173402702 @default.
- W3134730085 hasRelatedWork W3209779811 @default.
- W3134730085 hasVolume "1" @default.
- W3134730085 isParatext "false" @default.
- W3134730085 isRetracted "false" @default.
- W3134730085 magId "3134730085" @default.
- W3134730085 workType "article" @default.