Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134733584> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3134733584 endingPage "101365" @default.
- W3134733584 startingPage "101365" @default.
- W3134733584 abstract "The study of self organized networks is considered a key element in developing the new generation of cellular networks. Mobile service providers are adopting new technologies such as small cells and precoding to deploy their networks according to 5G standards. As these type of technologies gain more importance and popularity, network self organization become a more essential function in operating the network resources. Self organized networks have been classified into three main categorizes: self optimization, self configuration, and self healing. The first two categories showed further development and research interest when compared to self-healing. Due to the high density nature of small cells, using massive antennas in the network, and their susceptibility to failures for various reasons, the demand for a clear self-healing process and architecture is deemed urgent. In this paper the current self-healing process in addition to the fault tolerance aspects for the future 5G are studied and a new process model for organizing the self-healing process is proposed. The new process model is meant to map the different functionalities needed to perform a successful self healing process. The model with the proposed descriptive network architecture aims to identify the different functions within the self-healing process model. In order to test the operation ability of the model, a new big data aspect is added to the network architecture to aid in analyzing the huge amount of data needed to efficiently perform the self-healing process. Results show that the proposed precoding technique in conjunction with the machine learning algorithm based on a decision tree model that uses empirical data collected from the network can identify the status of cells (healthy, congested or failing) and suitable self-healing procedures can be triggered to recover the cell accordingly." @default.
- W3134733584 created "2021-03-15" @default.
- W3134733584 creator A5054289689 @default.
- W3134733584 creator A5069254545 @default.
- W3134733584 creator A5070427265 @default.
- W3134733584 date "2021-06-01" @default.
- W3134733584 modified "2023-10-17" @default.
- W3134733584 title "A novel self-healing model using precoding & big-data based approach for 5G networks" @default.
- W3134733584 cites W1974725834 @default.
- W3134733584 cites W2030140718 @default.
- W3134733584 cites W2046881505 @default.
- W3134733584 cites W2057159504 @default.
- W3134733584 cites W2151854870 @default.
- W3134733584 cites W2164536085 @default.
- W3134733584 cites W2610968021 @default.
- W3134733584 cites W2963055671 @default.
- W3134733584 cites W2963208909 @default.
- W3134733584 cites W2963552185 @default.
- W3134733584 cites W2970361397 @default.
- W3134733584 doi "https://doi.org/10.1016/j.pmcj.2021.101365" @default.
- W3134733584 hasPublicationYear "2021" @default.
- W3134733584 type Work @default.
- W3134733584 sameAs 3134733584 @default.
- W3134733584 citedByCount "12" @default.
- W3134733584 countsByYear W31347335842021 @default.
- W3134733584 countsByYear W31347335842022 @default.
- W3134733584 countsByYear W31347335842023 @default.
- W3134733584 crossrefType "journal-article" @default.
- W3134733584 hasAuthorship W3134733584A5054289689 @default.
- W3134733584 hasAuthorship W3134733584A5069254545 @default.
- W3134733584 hasAuthorship W3134733584A5070427265 @default.
- W3134733584 hasBestOaLocation W31347335841 @default.
- W3134733584 hasConcept C111919701 @default.
- W3134733584 hasConcept C120314980 @default.
- W3134733584 hasConcept C124101348 @default.
- W3134733584 hasConcept C127162648 @default.
- W3134733584 hasConcept C153646914 @default.
- W3134733584 hasConcept C160562895 @default.
- W3134733584 hasConcept C207987634 @default.
- W3134733584 hasConcept C31258907 @default.
- W3134733584 hasConcept C41008148 @default.
- W3134733584 hasConcept C75684735 @default.
- W3134733584 hasConcept C98045186 @default.
- W3134733584 hasConceptScore W3134733584C111919701 @default.
- W3134733584 hasConceptScore W3134733584C120314980 @default.
- W3134733584 hasConceptScore W3134733584C124101348 @default.
- W3134733584 hasConceptScore W3134733584C127162648 @default.
- W3134733584 hasConceptScore W3134733584C153646914 @default.
- W3134733584 hasConceptScore W3134733584C160562895 @default.
- W3134733584 hasConceptScore W3134733584C207987634 @default.
- W3134733584 hasConceptScore W3134733584C31258907 @default.
- W3134733584 hasConceptScore W3134733584C41008148 @default.
- W3134733584 hasConceptScore W3134733584C75684735 @default.
- W3134733584 hasConceptScore W3134733584C98045186 @default.
- W3134733584 hasLocation W31347335841 @default.
- W3134733584 hasOpenAccess W3134733584 @default.
- W3134733584 hasPrimaryLocation W31347335841 @default.
- W3134733584 hasRelatedWork W2152088989 @default.
- W3134733584 hasRelatedWork W2401571617 @default.
- W3134733584 hasRelatedWork W2756419127 @default.
- W3134733584 hasRelatedWork W2905893439 @default.
- W3134733584 hasRelatedWork W2953205382 @default.
- W3134733584 hasRelatedWork W3135374966 @default.
- W3134733584 hasRelatedWork W3154774209 @default.
- W3134733584 hasRelatedWork W415524449 @default.
- W3134733584 hasRelatedWork W4281688526 @default.
- W3134733584 hasRelatedWork W4366493479 @default.
- W3134733584 hasVolume "73" @default.
- W3134733584 isParatext "false" @default.
- W3134733584 isRetracted "false" @default.
- W3134733584 magId "3134733584" @default.
- W3134733584 workType "article" @default.