Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134736546> ?p ?o ?g. }
- W3134736546 endingPage "150" @default.
- W3134736546 startingPage "139" @default.
- W3134736546 abstract "The design of pattern recognition-based myoelectric interfaces has been heavily explored and contested in the research literature. A considerable proportion of the performance of these interfaces has been linked to the quality of the feature extraction (FE) stage used to describe the underlying myoelectric signal. In this paper, we address two important factors of FE that have not been fully exploited; 1) Spatial focus - traditional FE methods focus mainly on the concatenation of features extracted from individual channels and 2) Temporal focus - available FE methods are cross-sectional in nature, largely ignoring the temporal information that may exist between feature windows. To overcome these limitations, several spatiotemporal FE methods have been proposed including hand-crafted and deep learning (DL) models, with the latter showing significant performance enhancements at the cost of increased computational burden. This paper tackles the aforementioned limitations by 1) proposing novel extensions to simple time-domain FE methods, including the waveform length, zero crossings and root mean square, that can capture the relation between any number of channels, and 2) leveraging the long short-term memory concepts from deep neural networks to build a recursive framework that overcomes the cross-sectional nature of traditional methods. The advantages offered by the proposed Recursive Multi-Signal Temporal Fusion (RMTF) features include improved performance, competing with state-of-the-art FE methods without the computational costs associated with leading DL models, and the simplicity of the concepts making them suitable for real-time implementations. Experiments on 65 intact-limbed and amputee subjects reveal an approximate average of 15% reduction in classification errors as compared to models built with other feature sets." @default.
- W3134736546 created "2021-03-15" @default.
- W3134736546 creator A5008639824 @default.
- W3134736546 creator A5025818642 @default.
- W3134736546 creator A5046572597 @default.
- W3134736546 creator A5066206447 @default.
- W3134736546 date "2020-10-01" @default.
- W3134736546 modified "2023-10-07" @default.
- W3134736546 title "Recursive Multi-Signal Temporal Fusions With Attention Mechanism Improves EMG Feature Extraction" @default.
- W3134736546 cites W2110119146 @default.
- W3134736546 cites W2113998107 @default.
- W3134736546 cites W2119008936 @default.
- W3134736546 cites W2123167643 @default.
- W3134736546 cites W2133530044 @default.
- W3134736546 cites W2243789297 @default.
- W3134736546 cites W2330431166 @default.
- W3134736546 cites W2396197441 @default.
- W3134736546 cites W2408800426 @default.
- W3134736546 cites W2555541061 @default.
- W3134736546 cites W2587844882 @default.
- W3134736546 cites W2600327335 @default.
- W3134736546 cites W2735762883 @default.
- W3134736546 cites W2762706434 @default.
- W3134736546 cites W2765746460 @default.
- W3134736546 cites W2804301333 @default.
- W3134736546 cites W2886903801 @default.
- W3134736546 cites W2898716605 @default.
- W3134736546 cites W2899214097 @default.
- W3134736546 cites W2911956695 @default.
- W3134736546 cites W2945179872 @default.
- W3134736546 cites W2946231088 @default.
- W3134736546 cites W2949544190 @default.
- W3134736546 cites W2962879438 @default.
- W3134736546 cites W2966907001 @default.
- W3134736546 cites W2973700007 @default.
- W3134736546 cites W2979929539 @default.
- W3134736546 cites W2979943183 @default.
- W3134736546 cites W2979992677 @default.
- W3134736546 cites W2997047091 @default.
- W3134736546 cites W2999207022 @default.
- W3134736546 cites W3010195458 @default.
- W3134736546 cites W3012425893 @default.
- W3134736546 cites W3024311329 @default.
- W3134736546 cites W3033182043 @default.
- W3134736546 cites W3091859828 @default.
- W3134736546 cites W3099835169 @default.
- W3134736546 doi "https://doi.org/10.1109/tai.2020.3046160" @default.
- W3134736546 hasPublicationYear "2020" @default.
- W3134736546 type Work @default.
- W3134736546 sameAs 3134736546 @default.
- W3134736546 citedByCount "13" @default.
- W3134736546 countsByYear W31347365462021 @default.
- W3134736546 countsByYear W31347365462022 @default.
- W3134736546 countsByYear W31347365462023 @default.
- W3134736546 crossrefType "journal-article" @default.
- W3134736546 hasAuthorship W3134736546A5008639824 @default.
- W3134736546 hasAuthorship W3134736546A5025818642 @default.
- W3134736546 hasAuthorship W3134736546A5046572597 @default.
- W3134736546 hasAuthorship W3134736546A5066206447 @default.
- W3134736546 hasConcept C108583219 @default.
- W3134736546 hasConcept C11413529 @default.
- W3134736546 hasConcept C114614502 @default.
- W3134736546 hasConcept C119857082 @default.
- W3134736546 hasConcept C120665830 @default.
- W3134736546 hasConcept C121332964 @default.
- W3134736546 hasConcept C138885662 @default.
- W3134736546 hasConcept C153180895 @default.
- W3134736546 hasConcept C154945302 @default.
- W3134736546 hasConcept C179799912 @default.
- W3134736546 hasConcept C192209626 @default.
- W3134736546 hasConcept C197424946 @default.
- W3134736546 hasConcept C199360897 @default.
- W3134736546 hasConcept C26713055 @default.
- W3134736546 hasConcept C2776401178 @default.
- W3134736546 hasConcept C2779843651 @default.
- W3134736546 hasConcept C33923547 @default.
- W3134736546 hasConcept C41008148 @default.
- W3134736546 hasConcept C41895202 @default.
- W3134736546 hasConcept C50644808 @default.
- W3134736546 hasConcept C52622490 @default.
- W3134736546 hasConcept C554190296 @default.
- W3134736546 hasConcept C76155785 @default.
- W3134736546 hasConcept C81363708 @default.
- W3134736546 hasConcept C87619178 @default.
- W3134736546 hasConceptScore W3134736546C108583219 @default.
- W3134736546 hasConceptScore W3134736546C11413529 @default.
- W3134736546 hasConceptScore W3134736546C114614502 @default.
- W3134736546 hasConceptScore W3134736546C119857082 @default.
- W3134736546 hasConceptScore W3134736546C120665830 @default.
- W3134736546 hasConceptScore W3134736546C121332964 @default.
- W3134736546 hasConceptScore W3134736546C138885662 @default.
- W3134736546 hasConceptScore W3134736546C153180895 @default.
- W3134736546 hasConceptScore W3134736546C154945302 @default.
- W3134736546 hasConceptScore W3134736546C179799912 @default.
- W3134736546 hasConceptScore W3134736546C192209626 @default.
- W3134736546 hasConceptScore W3134736546C197424946 @default.
- W3134736546 hasConceptScore W3134736546C199360897 @default.
- W3134736546 hasConceptScore W3134736546C26713055 @default.