Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134772852> ?p ?o ?g. }
- W3134772852 endingPage "749" @default.
- W3134772852 startingPage "737" @default.
- W3134772852 abstract "Internet of Things (IoT) terminals have been widely deployed for data sensing and analysis, and efficient data storage and transmission plays an important role in green IoT due to the explosive data growth. To simultaneously reduce the data dimension and preserves the discriminative intrinsic knowledge of data, this paper develops a novel latent discriminative low-rank projection (LDLRP) method for visual dimension reduction. Specifically, a data self-expressiveness model is established by considering the low-rank and discriminative similarity relations of data. Then, the developed model is efficiently optimized and solved via an augmented Lagrange multiplier (ALM) based-iterative algorithm, and a block-diagonal solution can be found for intraclass and interclass graph construction. Afterwards, a discriminative dimension reduced-subspace is derived by concurrently minimizing the intraclass scatter and maximizing the interclass scatter. The experimental results on benchmark datasets show that the proposed method can learn discriminative lower-dimensional expressions of high-dimensional data, and yield promising classification accuracy compared with several state-of-the-art methods. Hence, the effectiveness and efficiency of proposed method in data dimension reduction and knowledge preservation are verified, which will facilitate efficient data storage, transmission and application in green IoT." @default.
- W3134772852 created "2021-03-15" @default.
- W3134772852 creator A5003799076 @default.
- W3134772852 creator A5039415171 @default.
- W3134772852 creator A5041541232 @default.
- W3134772852 creator A5048122479 @default.
- W3134772852 creator A5050679517 @default.
- W3134772852 creator A5076994242 @default.
- W3134772852 date "2021-06-01" @default.
- W3134772852 modified "2023-10-01" @default.
- W3134772852 title "Latent Discriminative Low-Rank Projection for Visual Dimension Reduction in Green Internet of Things" @default.
- W3134772852 cites W1975815261 @default.
- W3134772852 cites W1993962865 @default.
- W3134772852 cites W1997201895 @default.
- W3134772852 cites W2053186076 @default.
- W3134772852 cites W2070127246 @default.
- W3134772852 cites W2089468765 @default.
- W3134772852 cites W2097308346 @default.
- W3134772852 cites W2104294146 @default.
- W3134772852 cites W2106955188 @default.
- W3134772852 cites W2121647436 @default.
- W3134772852 cites W2123921160 @default.
- W3134772852 cites W2129812935 @default.
- W3134772852 cites W2528703773 @default.
- W3134772852 cites W2557450880 @default.
- W3134772852 cites W2608501919 @default.
- W3134772852 cites W2616803684 @default.
- W3134772852 cites W2744006307 @default.
- W3134772852 cites W2773071069 @default.
- W3134772852 cites W2791052411 @default.
- W3134772852 cites W2792991240 @default.
- W3134772852 cites W2793258284 @default.
- W3134772852 cites W2806464206 @default.
- W3134772852 cites W2807998075 @default.
- W3134772852 cites W2883818409 @default.
- W3134772852 cites W2886969606 @default.
- W3134772852 cites W2910376060 @default.
- W3134772852 cites W2956751376 @default.
- W3134772852 cites W2964115256 @default.
- W3134772852 cites W2972505576 @default.
- W3134772852 cites W2999214893 @default.
- W3134772852 cites W3003326148 @default.
- W3134772852 cites W3040902738 @default.
- W3134772852 cites W3111084717 @default.
- W3134772852 cites W3117379804 @default.
- W3134772852 cites W3119569744 @default.
- W3134772852 cites W3148981562 @default.
- W3134772852 doi "https://doi.org/10.1109/tgcn.2021.3062972" @default.
- W3134772852 hasPublicationYear "2021" @default.
- W3134772852 type Work @default.
- W3134772852 sameAs 3134772852 @default.
- W3134772852 citedByCount "11" @default.
- W3134772852 countsByYear W31347728522021 @default.
- W3134772852 countsByYear W31347728522022 @default.
- W3134772852 countsByYear W31347728522023 @default.
- W3134772852 crossrefType "journal-article" @default.
- W3134772852 hasAuthorship W3134772852A5003799076 @default.
- W3134772852 hasAuthorship W3134772852A5039415171 @default.
- W3134772852 hasAuthorship W3134772852A5041541232 @default.
- W3134772852 hasAuthorship W3134772852A5048122479 @default.
- W3134772852 hasAuthorship W3134772852A5050679517 @default.
- W3134772852 hasAuthorship W3134772852A5076994242 @default.
- W3134772852 hasConcept C119857082 @default.
- W3134772852 hasConcept C124101348 @default.
- W3134772852 hasConcept C153180895 @default.
- W3134772852 hasConcept C154945302 @default.
- W3134772852 hasConcept C202444582 @default.
- W3134772852 hasConcept C33676613 @default.
- W3134772852 hasConcept C33923547 @default.
- W3134772852 hasConcept C41008148 @default.
- W3134772852 hasConcept C70518039 @default.
- W3134772852 hasConcept C97931131 @default.
- W3134772852 hasConceptScore W3134772852C119857082 @default.
- W3134772852 hasConceptScore W3134772852C124101348 @default.
- W3134772852 hasConceptScore W3134772852C153180895 @default.
- W3134772852 hasConceptScore W3134772852C154945302 @default.
- W3134772852 hasConceptScore W3134772852C202444582 @default.
- W3134772852 hasConceptScore W3134772852C33676613 @default.
- W3134772852 hasConceptScore W3134772852C33923547 @default.
- W3134772852 hasConceptScore W3134772852C41008148 @default.
- W3134772852 hasConceptScore W3134772852C70518039 @default.
- W3134772852 hasConceptScore W3134772852C97931131 @default.
- W3134772852 hasFunder F4320311778 @default.
- W3134772852 hasFunder F4320323172 @default.
- W3134772852 hasFunder F4320334764 @default.
- W3134772852 hasIssue "2" @default.
- W3134772852 hasLocation W31347728521 @default.
- W3134772852 hasOpenAccess W3134772852 @default.
- W3134772852 hasPrimaryLocation W31347728521 @default.
- W3134772852 hasRelatedWork W1972656095 @default.
- W3134772852 hasRelatedWork W2024160000 @default.
- W3134772852 hasRelatedWork W2061273563 @default.
- W3134772852 hasRelatedWork W2285052147 @default.
- W3134772852 hasRelatedWork W2729514902 @default.
- W3134772852 hasRelatedWork W2743258233 @default.
- W3134772852 hasRelatedWork W2773500201 @default.
- W3134772852 hasRelatedWork W2970216048 @default.
- W3134772852 hasRelatedWork W2998168123 @default.