Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134774587> ?p ?o ?g. }
- W3134774587 endingPage "1554" @default.
- W3134774587 startingPage "1545" @default.
- W3134774587 abstract "ConspectusSemiconductor nanocrystals (NCs) fluoresce with a color that strongly depends on their size and shape. Thus, to obtain homogeneous optical properties, researchers have strived to synthesize particles that are uniform. However, because NCs typically grow through continuous, incremental addition of material, slight differences in the growth process between individual crystallites yield statistical distributions in size and shape, leading to inhomogeneities in their optical characteristics. Much work has focused on improving synthetic protocols to control these distributions and enhance performance. Interestingly, during these efforts, several syntheses were discovered that exhibit a different type of growth process. The NCs jump from one discrete size to the next. Through purification methods, one of these sizes can then be isolated, providing a different approach to uniform NCs. Unfortunately, the fundamental mechanism behind such discrete growth and how it differs from the conventional continuous process have remained poorly understood.Discrete growth has been observed in two major classes of NCs: semiconductor nanoplatelets (NPLs) and magic-sized clusters (MSCs). NPLs are quasi-two-dimensional crystallites that exhibit a precise thickness of only a few atomic layers but much larger lateral dimensions. During growth, NPLs slowly appear with an increasing number of monolayers. By halting this process at a specific time, NPLs with a desired thickness can then be isolated (e.g., four monolayers). Because the optical properties are primarily governed by this thickness, which is uniform, NPLs exhibit improved optical properties such as narrower fluorescence line widths.While NPLs have highly anisotropic shapes and show discrete growth only in one dimension (thickness), MSCs are isotropic particles. The name “magic” arose because a specific set of NC sizes appear during synthesis. They have been believed to represent special atomic arrangements that possess enhanced structural stability. Historically, they were very small, hence molecular-scale “clusters.” Isolation of one of the MSC sizes can then, in principle, provide a uniform sample of NCs. More recently, MSC growth has been extended to larger sizes, beyond what is commonly considered to be the “cluster” regime, challenging the conventional explanation for these materials.This Account summarizes recent work by our group to understand the mechanism that governs discrete growth in semiconductor NCs. We begin by describing the synthesis of NPLs. Next, we discuss the mechanism behind the highly anisotropic shape of NPLs. We build on this by examining the ripening process in NPLs. We show that NPLs slowly appear with increasing thickness, counterintuitively through lateral growth. Then, we turn to the synthesis of MSCs, in particular focusing on their growth mechanism. Our findings indicate a strong connection between NPLs and MSCs. Finally, we review several remaining challenges for the growth of NPLs and MSCs and give a brief outlook on the future of discrete growth. By understanding the underlying process, we believe that it can be exploited more broadly, potentially moving us toward more uniform nanomaterials." @default.
- W3134774587 created "2021-03-15" @default.
- W3134774587 creator A5029141316 @default.
- W3134774587 creator A5036187606 @default.
- W3134774587 creator A5064925832 @default.
- W3134774587 creator A5066666900 @default.
- W3134774587 date "2021-03-04" @default.
- W3134774587 modified "2023-10-17" @default.
- W3134774587 title "Understanding Discrete Growth in Semiconductor Nanocrystals: Nanoplatelets and Magic-Sized Clusters" @default.
- W3134774587 cites W1513209253 @default.
- W3134774587 cites W1875621502 @default.
- W3134774587 cites W1964928625 @default.
- W3134774587 cites W1980495221 @default.
- W3134774587 cites W1986027207 @default.
- W3134774587 cites W1990752779 @default.
- W3134774587 cites W1991900741 @default.
- W3134774587 cites W1997317395 @default.
- W3134774587 cites W2012839095 @default.
- W3134774587 cites W2018390405 @default.
- W3134774587 cites W2019401264 @default.
- W3134774587 cites W2022170585 @default.
- W3134774587 cites W2025669689 @default.
- W3134774587 cites W2033727896 @default.
- W3134774587 cites W2042777242 @default.
- W3134774587 cites W2048324965 @default.
- W3134774587 cites W2060487974 @default.
- W3134774587 cites W2061745729 @default.
- W3134774587 cites W2066682551 @default.
- W3134774587 cites W2068035548 @default.
- W3134774587 cites W2070602906 @default.
- W3134774587 cites W2091279318 @default.
- W3134774587 cites W2101130956 @default.
- W3134774587 cites W2125044103 @default.
- W3134774587 cites W2132160740 @default.
- W3134774587 cites W2137301424 @default.
- W3134774587 cites W2154426180 @default.
- W3134774587 cites W2164984043 @default.
- W3134774587 cites W2166666421 @default.
- W3134774587 cites W2257114270 @default.
- W3134774587 cites W2322426425 @default.
- W3134774587 cites W2325793081 @default.
- W3134774587 cites W2326252434 @default.
- W3134774587 cites W2327250759 @default.
- W3134774587 cites W2335746651 @default.
- W3134774587 cites W2399279899 @default.
- W3134774587 cites W2400157709 @default.
- W3134774587 cites W2406567467 @default.
- W3134774587 cites W2470439878 @default.
- W3134774587 cites W2510847486 @default.
- W3134774587 cites W2591297204 @default.
- W3134774587 cites W2623839382 @default.
- W3134774587 cites W2748147434 @default.
- W3134774587 cites W2762129751 @default.
- W3134774587 cites W2819236562 @default.
- W3134774587 cites W2890978531 @default.
- W3134774587 cites W2895716724 @default.
- W3134774587 cites W2945268628 @default.
- W3134774587 cites W2964771843 @default.
- W3134774587 cites W2981390990 @default.
- W3134774587 cites W2987630163 @default.
- W3134774587 cites W2995845137 @default.
- W3134774587 cites W3003917878 @default.
- W3134774587 cites W3007866420 @default.
- W3134774587 cites W3014427786 @default.
- W3134774587 cites W3022220277 @default.
- W3134774587 cites W3124141982 @default.
- W3134774587 doi "https://doi.org/10.1021/acs.accounts.0c00859" @default.
- W3134774587 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33660971" @default.
- W3134774587 hasPublicationYear "2021" @default.
- W3134774587 type Work @default.
- W3134774587 sameAs 3134774587 @default.
- W3134774587 citedByCount "36" @default.
- W3134774587 countsByYear W31347745872021 @default.
- W3134774587 countsByYear W31347745872022 @default.
- W3134774587 countsByYear W31347745872023 @default.
- W3134774587 crossrefType "journal-article" @default.
- W3134774587 hasAuthorship W3134774587A5029141316 @default.
- W3134774587 hasAuthorship W3134774587A5036187606 @default.
- W3134774587 hasAuthorship W3134774587A5064925832 @default.
- W3134774587 hasAuthorship W3134774587A5066666900 @default.
- W3134774587 hasBestOaLocation W31347745871 @default.
- W3134774587 hasConcept C108225325 @default.
- W3134774587 hasConcept C120665830 @default.
- W3134774587 hasConcept C121332964 @default.
- W3134774587 hasConcept C121864883 @default.
- W3134774587 hasConcept C137637335 @default.
- W3134774587 hasConcept C159467904 @default.
- W3134774587 hasConcept C171250308 @default.
- W3134774587 hasConcept C175854130 @default.
- W3134774587 hasConcept C185592680 @default.
- W3134774587 hasConcept C191897082 @default.
- W3134774587 hasConcept C192562407 @default.
- W3134774587 hasConcept C49040817 @default.
- W3134774587 hasConcept C66882249 @default.
- W3134774587 hasConcept C7070889 @default.
- W3134774587 hasConcept C91881484 @default.
- W3134774587 hasConceptScore W3134774587C108225325 @default.
- W3134774587 hasConceptScore W3134774587C120665830 @default.