Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134776280> ?p ?o ?g. }
- W3134776280 endingPage "103725" @default.
- W3134776280 startingPage "103725" @default.
- W3134776280 abstract "The US is experiencing an opioid epidemic, and opioid overdose is causing more than 100 deaths per day. Early identification of patients at high risk of Opioid Overdose (OD) can help to make targeted preventative interventions. We aim to build a deep learning model that can predict the patients at high risk for opioid overdose and identify most relevant features. The study included the information of 5,231,614 patients from the Health Facts database with at least one opioid prescription between January 1, 2008 and December 31, 2017. Potential predictors (n = 1185) were extracted to build a feature matrix for prediction. Long Short-Term Memory (LSTM) based models were built to predict overdose risk in the next hospital visit. Prediction performance was compared with other machine learning methods assessed using machine learning metrics. Our sequential deep learning models built upon LSTM outperformed the other methods on opioid overdose prediction. LSTM with attention mechanism achieved the highest F-1 score (F-1 score: 0.7815, AUCROC: 0.8449). The model is also able to reveal top ranked predictive features by permutation important method, including medications and vital signs. This study demonstrates that a temporal deep learning based predictive model can achieve promising results on identifying risk of opioid overdose of patients using the history of electronic health records. It provides an alternative informatics-based approach to improving clinical decision support for possible early detection and intervention to reduce opioid overdose." @default.
- W3134776280 created "2021-03-15" @default.
- W3134776280 creator A5014972663 @default.
- W3134776280 creator A5019146461 @default.
- W3134776280 creator A5019319051 @default.
- W3134776280 creator A5019670923 @default.
- W3134776280 creator A5051162009 @default.
- W3134776280 creator A5072946826 @default.
- W3134776280 creator A5081245253 @default.
- W3134776280 creator A5086689344 @default.
- W3134776280 date "2021-04-01" @default.
- W3134776280 modified "2023-09-30" @default.
- W3134776280 title "Predicting opioid overdose risk of patients with opioid prescriptions using electronic health records based on temporal deep learning" @default.
- W3134776280 cites W1984689109 @default.
- W3134776280 cites W2006214576 @default.
- W3134776280 cites W2019229473 @default.
- W3134776280 cites W2032490348 @default.
- W3134776280 cites W2064675550 @default.
- W3134776280 cites W2319317039 @default.
- W3134776280 cites W2488984245 @default.
- W3134776280 cites W2519105412 @default.
- W3134776280 cites W2561135550 @default.
- W3134776280 cites W2765449478 @default.
- W3134776280 cites W2767891136 @default.
- W3134776280 cites W2776901459 @default.
- W3134776280 cites W2905506833 @default.
- W3134776280 cites W2909449769 @default.
- W3134776280 cites W2911964244 @default.
- W3134776280 cites W2919256513 @default.
- W3134776280 cites W2924338030 @default.
- W3134776280 cites W2963374347 @default.
- W3134776280 cites W2972264224 @default.
- W3134776280 cites W2980213974 @default.
- W3134776280 cites W3198649872 @default.
- W3134776280 doi "https://doi.org/10.1016/j.jbi.2021.103725" @default.
- W3134776280 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33711546" @default.
- W3134776280 hasPublicationYear "2021" @default.
- W3134776280 type Work @default.
- W3134776280 sameAs 3134776280 @default.
- W3134776280 citedByCount "15" @default.
- W3134776280 countsByYear W31347762802021 @default.
- W3134776280 countsByYear W31347762802022 @default.
- W3134776280 countsByYear W31347762802023 @default.
- W3134776280 crossrefType "journal-article" @default.
- W3134776280 hasAuthorship W3134776280A5014972663 @default.
- W3134776280 hasAuthorship W3134776280A5019146461 @default.
- W3134776280 hasAuthorship W3134776280A5019319051 @default.
- W3134776280 hasAuthorship W3134776280A5019670923 @default.
- W3134776280 hasAuthorship W3134776280A5051162009 @default.
- W3134776280 hasAuthorship W3134776280A5072946826 @default.
- W3134776280 hasAuthorship W3134776280A5081245253 @default.
- W3134776280 hasAuthorship W3134776280A5086689344 @default.
- W3134776280 hasBestOaLocation W31347762801 @default.
- W3134776280 hasConcept C107327155 @default.
- W3134776280 hasConcept C108583219 @default.
- W3134776280 hasConcept C118552586 @default.
- W3134776280 hasConcept C119599485 @default.
- W3134776280 hasConcept C119857082 @default.
- W3134776280 hasConcept C126322002 @default.
- W3134776280 hasConcept C127413603 @default.
- W3134776280 hasConcept C154945302 @default.
- W3134776280 hasConcept C170493617 @default.
- W3134776280 hasConcept C191630685 @default.
- W3134776280 hasConcept C194828623 @default.
- W3134776280 hasConcept C2426938 @default.
- W3134776280 hasConcept C27415008 @default.
- W3134776280 hasConcept C2776315796 @default.
- W3134776280 hasConcept C2778750930 @default.
- W3134776280 hasConcept C2779148768 @default.
- W3134776280 hasConcept C2781063702 @default.
- W3134776280 hasConcept C3017944768 @default.
- W3134776280 hasConcept C41008148 @default.
- W3134776280 hasConcept C63527458 @default.
- W3134776280 hasConcept C71924100 @default.
- W3134776280 hasConcept C98274493 @default.
- W3134776280 hasConceptScore W3134776280C107327155 @default.
- W3134776280 hasConceptScore W3134776280C108583219 @default.
- W3134776280 hasConceptScore W3134776280C118552586 @default.
- W3134776280 hasConceptScore W3134776280C119599485 @default.
- W3134776280 hasConceptScore W3134776280C119857082 @default.
- W3134776280 hasConceptScore W3134776280C126322002 @default.
- W3134776280 hasConceptScore W3134776280C127413603 @default.
- W3134776280 hasConceptScore W3134776280C154945302 @default.
- W3134776280 hasConceptScore W3134776280C170493617 @default.
- W3134776280 hasConceptScore W3134776280C191630685 @default.
- W3134776280 hasConceptScore W3134776280C194828623 @default.
- W3134776280 hasConceptScore W3134776280C2426938 @default.
- W3134776280 hasConceptScore W3134776280C27415008 @default.
- W3134776280 hasConceptScore W3134776280C2776315796 @default.
- W3134776280 hasConceptScore W3134776280C2778750930 @default.
- W3134776280 hasConceptScore W3134776280C2779148768 @default.
- W3134776280 hasConceptScore W3134776280C2781063702 @default.
- W3134776280 hasConceptScore W3134776280C3017944768 @default.
- W3134776280 hasConceptScore W3134776280C41008148 @default.
- W3134776280 hasConceptScore W3134776280C63527458 @default.
- W3134776280 hasConceptScore W3134776280C71924100 @default.
- W3134776280 hasConceptScore W3134776280C98274493 @default.
- W3134776280 hasFunder F4320331904 @default.