Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134780052> ?p ?o ?g. }
- W3134780052 abstract "Fast and accurate reconstruction of magnetic resonance (MR) images from under-sampled data is important in many clinical applications. In recent years, deep learning-based methods have been shown to produce superior performance on MR image reconstruction. However, these methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations. In order to overcome this challenge, we propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy. However, the generalizability of models trained with the FL setting can still be suboptimal due to domain shift, which results from the data collected at multiple institutions with different sensors, disease types, and acquisition protocols, etc. With the motivation of circumventing this challenge, we propose a cross-site modeling for MR image reconstruction in which the learned intermediate latent features among different source sites are aligned with the distribution of the latent features at the target site. Extensive experiments are conducted to provide various insights about FL for MR image reconstruction. Experimental results demonstrate that the proposed framework is a promising direction to utilize multi-institutional data without compromising patients' privacy for achieving improved MR image reconstruction. Our code will be available at https://github.com/guopengf/FLMRCM." @default.
- W3134780052 created "2021-03-15" @default.
- W3134780052 creator A5004716468 @default.
- W3134780052 creator A5014463024 @default.
- W3134780052 creator A5049356393 @default.
- W3134780052 creator A5058782332 @default.
- W3134780052 creator A5065661520 @default.
- W3134780052 date "2021-03-02" @default.
- W3134780052 modified "2023-10-18" @default.
- W3134780052 title "Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning" @default.
- W3134780052 cites W1641498739 @default.
- W3134780052 cites W1901129140 @default.
- W3134780052 cites W2060952848 @default.
- W3134780052 cites W2101675075 @default.
- W3134780052 cites W2144148628 @default.
- W3134780052 cites W2145096794 @default.
- W3134780052 cites W2159291411 @default.
- W3134780052 cites W2167396304 @default.
- W3134780052 cites W2187089797 @default.
- W3134780052 cites W2214409633 @default.
- W3134780052 cites W2621182918 @default.
- W3134780052 cites W2767079719 @default.
- W3134780052 cites W2889995282 @default.
- W3134780052 cites W2895865029 @default.
- W3134780052 cites W2897230576 @default.
- W3134780052 cites W2898141270 @default.
- W3134780052 cites W2904760378 @default.
- W3134780052 cites W2912213068 @default.
- W3134780052 cites W2912592113 @default.
- W3134780052 cites W2914328083 @default.
- W3134780052 cites W2962734274 @default.
- W3134780052 cites W2962808524 @default.
- W3134780052 cites W2963682501 @default.
- W3134780052 cites W2964293140 @default.
- W3134780052 cites W2966304337 @default.
- W3134780052 cites W2972061446 @default.
- W3134780052 cites W2978242125 @default.
- W3134780052 cites W2984306354 @default.
- W3134780052 cites W2986413680 @default.
- W3134780052 cites W2990330770 @default.
- W3134780052 cites W2999212661 @default.
- W3134780052 cites W3001554227 @default.
- W3134780052 cites W3003650457 @default.
- W3134780052 cites W3040079328 @default.
- W3134780052 cites W3048158559 @default.
- W3134780052 cites W3089971547 @default.
- W3134780052 cites W3091822639 @default.
- W3134780052 cites W3103802018 @default.
- W3134780052 cites W3103921058 @default.
- W3134780052 cites W3105282616 @default.
- W3134780052 cites W3116656768 @default.
- W3134780052 doi "https://doi.org/10.48550/arxiv.2103.02148" @default.
- W3134780052 hasPublicationYear "2021" @default.
- W3134780052 type Work @default.
- W3134780052 sameAs 3134780052 @default.
- W3134780052 citedByCount "3" @default.
- W3134780052 countsByYear W31347800522021 @default.
- W3134780052 crossrefType "posted-content" @default.
- W3134780052 hasAuthorship W3134780052A5004716468 @default.
- W3134780052 hasAuthorship W3134780052A5014463024 @default.
- W3134780052 hasAuthorship W3134780052A5049356393 @default.
- W3134780052 hasAuthorship W3134780052A5058782332 @default.
- W3134780052 hasAuthorship W3134780052A5065661520 @default.
- W3134780052 hasBestOaLocation W31347800521 @default.
- W3134780052 hasConcept C105795698 @default.
- W3134780052 hasConcept C108583219 @default.
- W3134780052 hasConcept C115961682 @default.
- W3134780052 hasConcept C119857082 @default.
- W3134780052 hasConcept C124101348 @default.
- W3134780052 hasConcept C134306372 @default.
- W3134780052 hasConcept C141379421 @default.
- W3134780052 hasConcept C154945302 @default.
- W3134780052 hasConcept C177264268 @default.
- W3134780052 hasConcept C199360897 @default.
- W3134780052 hasConcept C27158222 @default.
- W3134780052 hasConcept C2776760102 @default.
- W3134780052 hasConcept C31601959 @default.
- W3134780052 hasConcept C31972630 @default.
- W3134780052 hasConcept C33923547 @default.
- W3134780052 hasConcept C36503486 @default.
- W3134780052 hasConcept C41008148 @default.
- W3134780052 hasConceptScore W3134780052C105795698 @default.
- W3134780052 hasConceptScore W3134780052C108583219 @default.
- W3134780052 hasConceptScore W3134780052C115961682 @default.
- W3134780052 hasConceptScore W3134780052C119857082 @default.
- W3134780052 hasConceptScore W3134780052C124101348 @default.
- W3134780052 hasConceptScore W3134780052C134306372 @default.
- W3134780052 hasConceptScore W3134780052C141379421 @default.
- W3134780052 hasConceptScore W3134780052C154945302 @default.
- W3134780052 hasConceptScore W3134780052C177264268 @default.
- W3134780052 hasConceptScore W3134780052C199360897 @default.
- W3134780052 hasConceptScore W3134780052C27158222 @default.
- W3134780052 hasConceptScore W3134780052C2776760102 @default.
- W3134780052 hasConceptScore W3134780052C31601959 @default.
- W3134780052 hasConceptScore W3134780052C31972630 @default.
- W3134780052 hasConceptScore W3134780052C33923547 @default.
- W3134780052 hasConceptScore W3134780052C36503486 @default.
- W3134780052 hasConceptScore W3134780052C41008148 @default.
- W3134780052 hasLocation W31347800521 @default.
- W3134780052 hasOpenAccess W3134780052 @default.