Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134788963> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3134788963 endingPage "625" @default.
- W3134788963 startingPage "623" @default.
- W3134788963 abstract "Despite advances in medical technology, the mortality rate for severe acute respiratory distress syndrome (ARDS) remains high at around 40% [[1]Hardin C. Hibbert K. ECMO for severe ARDS.N Engl J Med. 2018; 378: 2031-2032Crossref PubMed Scopus (38) Google Scholar]. In recent years, multiple studies, systematic reviews, and meta-analyses [2Munshi L. Walkey A. Goligher E. Pham T. Uleryk E.M. Fan E. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis.Lancet Respir Med. 2019; 7: 163-172Abstract Full Text Full Text PDF PubMed Scopus (208) Google Scholar, 3Peek G. Mungford M. Tiruvoipati R. Wilson A. Allen E. Thalanany M. et al.Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial.Lancet. 2009; 374Abstract Full Text Full Text PDF PubMed Scopus (2492) Google Scholar, 4Wang J. Wang Y. Wang T. Xing X. Zhang G. Is extracorporeal membrane oxygenation the standard care for acute respiratory distress syndrome: a systematic review and eta-Analysis.Heart Lung Circ. 2021; 30: 631-641Abstract Full Text Full Text PDF Scopus (6) Google Scholar, 5Barbaro R.P. MacLaren G. Boonstra P.S. Iwashyna T.J. Slutsky A.S. Fan E. et al.Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry.Lancet. 2020; 396: 1071-1078Abstract Full Text Full Text PDF PubMed Scopus (541) Google Scholar], including the study in this issue of Heart, Lung and Circulation published by Wang and colleagues [[4]Wang J. Wang Y. Wang T. Xing X. Zhang G. Is extracorporeal membrane oxygenation the standard care for acute respiratory distress syndrome: a systematic review and eta-Analysis.Heart Lung Circ. 2021; 30: 631-641Abstract Full Text Full Text PDF Scopus (6) Google Scholar], have indicated that treatment with veno-venous extracorporeal membrane oxygenation (VV-ECMO) may be associated with better outcomes in severe ARDS than conventional mechanical ventilation. Increasing evidence will likely lead to an increase in the use of VV-ECMO in the treatment of ARDS in the coming years [[6]Parekh M. Abrams D. Brodie D. Extracorporeal techniques in acute respiratory distress syndrome.Ann Transl Med. 2017; 5: 296Crossref PubMed Scopus (12) Google Scholar]. ARDS is an acute inflammatory lung injury resulting in widespread alveolar injury and hypoxaemia [[4]Wang J. Wang Y. Wang T. Xing X. Zhang G. Is extracorporeal membrane oxygenation the standard care for acute respiratory distress syndrome: a systematic review and eta-Analysis.Heart Lung Circ. 2021; 30: 631-641Abstract Full Text Full Text PDF Scopus (6) Google Scholar,[7]Griffiths M.J.D. McAuley D.F. Perkins G.D. Barrett N. Blackwood B. Boyle A. et al.Guidelines on the management of acute respiratory distress syndrome.BMJ Open Respir Res. 2019; 6: e000420Crossref PubMed Scopus (251) Google Scholar]. There is no gold standard to diagnose ARDS, and each ARDS case can have a multitude of causes [[7]Griffiths M.J.D. McAuley D.F. Perkins G.D. Barrett N. Blackwood B. Boyle A. et al.Guidelines on the management of acute respiratory distress syndrome.BMJ Open Respir Res. 2019; 6: e000420Crossref PubMed Scopus (251) Google Scholar]. Many providers diagnose ARDS based on the Berlin criteria which take into account the timing of symptoms, chest imaging, the presence of other possible explanations for pulmonary oedema, and oxygenation requirements [[8]Ranieri V.M. Rubenfeld G.D. Thompson B.T. Ferguson N.D. Caldwell E. Fan E. et al.Acute respiratory distress syndrome: the Berlin Definition.JAMA. 2012; 307: 2526-2533Crossref PubMed Scopus (7009) Google Scholar]. In their article, Wang and colleagues perform a comprehensive literature review and meta-analysis of research examining the utility of ECMO in the treatment of ARDS [[4]Wang J. Wang Y. Wang T. Xing X. Zhang G. Is extracorporeal membrane oxygenation the standard care for acute respiratory distress syndrome: a systematic review and eta-Analysis.Heart Lung Circ. 2021; 30: 631-641Abstract Full Text Full Text PDF Scopus (6) Google Scholar]. They found that ECMO treatment was associated with improved 60-day and 1-year mortality but increased intensive care unit (ICU) mortality [[4]Wang J. Wang Y. Wang T. Xing X. Zhang G. Is extracorporeal membrane oxygenation the standard care for acute respiratory distress syndrome: a systematic review and eta-Analysis.Heart Lung Circ. 2021; 30: 631-641Abstract Full Text Full Text PDF Scopus (6) Google Scholar]. Applying these findings within the complex ecosystem of the ICU requires a consideration of patient, provider, and systems-level issues. Most often, authors cite a lack of high-quality randomised controlled trials (RCTs) as a limitation in definitively determining whether ECMO or conventional mechanical ventilation is more effective in treating ARDS [[2]Munshi L. Walkey A. Goligher E. Pham T. Uleryk E.M. Fan E. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis.Lancet Respir Med. 2019; 7: 163-172Abstract Full Text Full Text PDF PubMed Scopus (208) Google Scholar,[7]Griffiths M.J.D. McAuley D.F. Perkins G.D. Barrett N. Blackwood B. Boyle A. et al.Guidelines on the management of acute respiratory distress syndrome.BMJ Open Respir Res. 2019; 6: e000420Crossref PubMed Scopus (251) Google Scholar,[9]Aretha D. Fligou F. Kiekkas P. Karamouzos V. Voyagis G. Extracorporeal life support: the next step in moderate to severe ARDS-A review and meta-analysis of the literature.Biomed Res Int. 2019; 2019: 1035730Crossref PubMed Scopus (10) Google Scholar]. As discussed by Wang and colleagues, the two most definitive RCTs examining outcomes in those treated with ECMO for ARDS, the Conventional ventilation or ECMO for Severe Adult Respiratory Failure (CESAR) study and the ECMO to Rescue Lung Injury in Severe ARDS (EOLIA) study showed conflicting results [[3]Peek G. Mungford M. Tiruvoipati R. Wilson A. Allen E. Thalanany M. et al.Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial.Lancet. 2009; 374Abstract Full Text Full Text PDF PubMed Scopus (2492) Google Scholar,[10]Combes A. Hajage D. Capellier G. Demoule A. Lavoue S. Guervilly C. et al.Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome.N Engl J Med. 2018; 378: 1965-1975Crossref PubMed Scopus (1232) Google Scholar]. CESAR showed a significantly better likelihood of survival and an improvement in quality-adjusted life-years with ECMO treatment versus conventional mechanical ventilation [[3]Peek G. Mungford M. Tiruvoipati R. Wilson A. Allen E. Thalanany M. et al.Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial.Lancet. 2009; 374Abstract Full Text Full Text PDF PubMed Scopus (2492) Google Scholar]. EOLIA found an 11% decrease in mortality in the ECMO group but failed to reach statistical significance [[10]Combes A. Hajage D. Capellier G. Demoule A. Lavoue S. Guervilly C. et al.Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome.N Engl J Med. 2018; 378: 1965-1975Crossref PubMed Scopus (1232) Google Scholar]. Though some argue that results have been inconclusive, others assert that there is sufficient evidence to question the ethics of withholding ECMO treatment from patients with severe ARDS to conduct other RCTs [[11]Abrams D. Ferguson N.D. Brochard L. Fan E. Mercat A. Combes A. et al.ECMO for ARDS: from salvage to standard of care?.Lancet Respir Med. 2019; 7: 108-110Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar]. This makes a confirmatory RCT unlikely and underscores the importance of registry data. While more research is needed to definitively determine which patients would most benefit from the use of ECMO, improvements in technology and survivability in recent years has made ECMO a more reasonable treatment for patients with severe ARDS [[6]Parekh M. Abrams D. Brodie D. Extracorporeal techniques in acute respiratory distress syndrome.Ann Transl Med. 2017; 5: 296Crossref PubMed Scopus (12) Google Scholar]. In the United States, adult respiratory ECMO “runs” increased from 92 cases in 2008 to 3,133 in 2019, and the survival rate has increased from 39% to 65% within the same time period [[12]ECLS Registry Report United States Regional Summary - July, 2020. Extracorporeal Life Support Organization website. 2020Google Scholar]. In the coming years, results like those published by Wang and colleagues will continue to encourage clinicians to consider ECMO therapy for their patients with severe ARDS, particularly in the post COVID era [[4]Wang J. Wang Y. Wang T. Xing X. Zhang G. Is extracorporeal membrane oxygenation the standard care for acute respiratory distress syndrome: a systematic review and eta-Analysis.Heart Lung Circ. 2021; 30: 631-641Abstract Full Text Full Text PDF Scopus (6) Google Scholar]. The increasing use of ECMO for respiratory failure and ARDS treatment raises questions about how to increase capacity to safely and effectively deliver ECMO. ECMO requires significantly more providers and resources to operate compared to those with mechanical ventilation only, so how do medical centres scale up to accommodate more ECMO therapy? The most commonly used strategy to expand capacity of ECMO treatment and improve outcomes over the past decade has been risk stratification and mortality prediction models [[1]Hardin C. Hibbert K. ECMO for severe ARDS.N Engl J Med. 2018; 378: 2031-2032Crossref PubMed Scopus (38) Google Scholar,13Hilder M. Herbstreit F. Adamzik M. Beiderlinden M. Burschen M. Peters J. et al.Comparison of mortality prediction models in acute respiratory distress syndrome undergoing extracorporeal membrane oxygenation and development of a novel prediction score: the PREdiction of Survival on ECMO Therapy-Score (PRESET-Score).Crit Care. 2017; 21: 301Crossref PubMed Scopus (61) Google Scholar, 14Pappalardo F. Pieri M. Greco T. Patroniti N. Pesenti A. Arcadipane A. et al.Predicting mortality risk in patients undergoing venovenous ECMO for ARDS due to influenza A (H1N1) pneumonia: the ECMOnet score.Intensive Care Med. 2013; 39: 275-281Crossref PubMed Scopus (182) Google Scholar, 15Ahuja A. Shekar K. Patient selection for VV ECMO: have we found the crystal ball?.J Thorac Dis. 2018; 10: S1979-S1981Crossref PubMed Scopus (5) Google Scholar]. Because ECMO is not only invasive but also very resource-intensive, it is often reserved for the sickest patients and only considered when other, less extreme treatment options have been exhausted [[1]Hardin C. Hibbert K. ECMO for severe ARDS.N Engl J Med. 2018; 378: 2031-2032Crossref PubMed Scopus (38) Google Scholar,[11]Abrams D. Ferguson N.D. Brochard L. Fan E. Mercat A. Combes A. et al.ECMO for ARDS: from salvage to standard of care?.Lancet Respir Med. 2019; 7: 108-110Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar]. First line treatments for ARDS include lung protective-ventilation, prone positioning, and neuromuscular blockade with heavy sedation [[1]Hardin C. Hibbert K. ECMO for severe ARDS.N Engl J Med. 2018; 378: 2031-2032Crossref PubMed Scopus (38) Google Scholar,[7]Griffiths M.J.D. McAuley D.F. Perkins G.D. Barrett N. Blackwood B. Boyle A. et al.Guidelines on the management of acute respiratory distress syndrome.BMJ Open Respir Res. 2019; 6: e000420Crossref PubMed Scopus (251) Google Scholar]. For patients who do not respond to these less invasive options, ECMO allows for sufficient oxygenation without the use of potentially harmful ventilation volumes or peak pressures, and therefore helps decrease the risk for ventilator-associated lung injury [[7]Griffiths M.J.D. McAuley D.F. Perkins G.D. Barrett N. Blackwood B. Boyle A. et al.Guidelines on the management of acute respiratory distress syndrome.BMJ Open Respir Res. 2019; 6: e000420Crossref PubMed Scopus (251) Google Scholar]. Determining which patients would most benefit from ECMO support and which require less invasive strategies can be difficult. Several risk stratification models exist to aid clinicians in making this determination [[15]Ahuja A. Shekar K. Patient selection for VV ECMO: have we found the crystal ball?.J Thorac Dis. 2018; 10: S1979-S1981Crossref PubMed Scopus (5) Google Scholar]. The PREdiction of Survival on ECMO Therapy-Score, Predicting death for severe ARDS on VV-ECMO score, and the ECMOnet score have all shown moderate predictive value in determining which patients will benefit most from ECMO therapy [13Hilder M. Herbstreit F. Adamzik M. Beiderlinden M. Burschen M. Peters J. et al.Comparison of mortality prediction models in acute respiratory distress syndrome undergoing extracorporeal membrane oxygenation and development of a novel prediction score: the PREdiction of Survival on ECMO Therapy-Score (PRESET-Score).Crit Care. 2017; 21: 301Crossref PubMed Scopus (61) Google Scholar, 14Pappalardo F. Pieri M. Greco T. Patroniti N. Pesenti A. Arcadipane A. et al.Predicting mortality risk in patients undergoing venovenous ECMO for ARDS due to influenza A (H1N1) pneumonia: the ECMOnet score.Intensive Care Med. 2013; 39: 275-281Crossref PubMed Scopus (182) Google Scholar, 15Ahuja A. Shekar K. Patient selection for VV ECMO: have we found the crystal ball?.J Thorac Dis. 2018; 10: S1979-S1981Crossref PubMed Scopus (5) Google Scholar]. Further research is needed to refine these prediction models and to determine which best predicts ECMO outcomes. Even with accurate prediction models helping clinicians choose which patients would most benefit from ECMO therapy, limited resources can prevent access to ECMO [[16]Ramanathan K. Antognini D. Combes A. Paden M. Zakhary B. Ogino M. et al.Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases.Lancet Respir Med. 2020; 8: 518-526Abstract Full Text Full Text PDF PubMed Scopus (366) Google Scholar]. The H1N1 influenza pandemic highlighted how these resource limitations, particularly in trained personnel, could prevent those who might have benefitted from ECMO therapy from receiving the treatment [[17]Hackmann A.E. Wiggins L.M. Grimes G.P. Fogel R.M. Schenkel F.A. Barr M.L. et al.The utility of nurse-managed extracorporeal life support in an adult cardiac intensive care unit.Ann Thorac Surg. 2017; 104: 510-514Abstract Full Text Full Text PDF PubMed Scopus (13) Google Scholar]. Similarly to the H1N1 pandemic, ECMO usage has increased with the influx of patients suffering from severe ARDS secondary to COVID-19 infection [[5]Barbaro R.P. MacLaren G. Boonstra P.S. Iwashyna T.J. Slutsky A.S. Fan E. et al.Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry.Lancet. 2020; 396: 1071-1078Abstract Full Text Full Text PDF PubMed Scopus (541) Google Scholar,[16]Ramanathan K. Antognini D. Combes A. Paden M. Zakhary B. Ogino M. et al.Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases.Lancet Respir Med. 2020; 8: 518-526Abstract Full Text Full Text PDF PubMed Scopus (366) Google Scholar]. It is critical during this time to reevaluate staffing and resource utilisation models, to maximise the number of patients who can be cared for safely [[5]Barbaro R.P. MacLaren G. Boonstra P.S. Iwashyna T.J. Slutsky A.S. Fan E. et al.Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry.Lancet. 2020; 396: 1071-1078Abstract Full Text Full Text PDF PubMed Scopus (541) Google Scholar]. Expanding the role of nurses to supplement perfusionists is one possible solution to increase capacity to care for patients requiring ECMO support without sacrificing quality [[18]Freeman R. Nault C. Mowry J. Baldridge P. Expanded resources through utilization of a primary care giver extracorporeal membrane oxygenation model.Crit Care Nurs Q. 2012; 35: 39-49Crossref PubMed Scopus (19) Google Scholar]. Bedside nurses with special training in ECMO management are capable of fulfilling many of the roles that have traditionally been performed by perfusionists [[18]Freeman R. Nault C. Mowry J. Baldridge P. Expanded resources through utilization of a primary care giver extracorporeal membrane oxygenation model.Crit Care Nurs Q. 2012; 35: 39-49Crossref PubMed Scopus (19) Google Scholar,[19]Daly K.J. Camporota L. Barrett N.A. An international survey: the role of specialist nurses in adult respiratory extracorporeal membrane oxygenation.Nurs Crit Care. 2017; 22: 305-311Crossref PubMed Scopus (23) Google Scholar]. Following the H1N1 pandemic, the international Extracorporeal Life Support Organization (ELSO) created new guidelines for the training of ECMO specialists, allowing nurses with at least a year of critical care experience to be trained to fill the role [[20]Cavarocchi N. Wallace S. Hong E.Y. Tropea A. Byrne J. A cost-reducing extracorporeal membrane oxygenation (ECMO) program model: a single institution experience.Perfusion. 2015; Crossref Scopus (28) Google Scholar]. Expanding the responsibilities of nurses in the management of the ECMO circuit allows for larger perfusionist-to-patient ratios and reduces costs without sacrificing patient safety [[18]Freeman R. Nault C. Mowry J. Baldridge P. Expanded resources through utilization of a primary care giver extracorporeal membrane oxygenation model.Crit Care Nurs Q. 2012; 35: 39-49Crossref PubMed Scopus (19) Google Scholar,[20]Cavarocchi N. Wallace S. Hong E.Y. Tropea A. Byrne J. A cost-reducing extracorporeal membrane oxygenation (ECMO) program model: a single institution experience.Perfusion. 2015; Crossref Scopus (28) Google Scholar]. Though perfusionists should still be available for major events like cannulation, decannulation, and emergencies, these critical care nurses, directed by intensivists and standards of care algorithms, can manage the ECMO circuit in addition to the typical level of care provided to patients in the ICU. In addition to implementing risk stratification models and expanding nursing roles, consolidating patients requiring ECMO support to high volume medical centres or specialised lung recovery units when possible has the potential to increase capacity for ECMO treatments while also improving patient outcomes [[21]Menaker J. Dolly K. Rector R. Kufera J. Lee E.E. Tabatabai A. et al.The lung rescue unit-Does a dedicated intensive care unit for venovenous extracorporeal membrane oxygenation improve survival to discharge?.J Trauma Acute Care Surg. 2017; 83: 438-442Crossref PubMed Scopus (21) Google Scholar,[22]Barbaro R.P. Odetola F.O. Kidwell K.M. Paden M.L. Bartlett R.H. Davis M.M. et al.Association of hospital-level volume of extracorporeal membrane oxygenation cases and mortality. Analysis of the extracorporeal life support organization registry.Am J Respir Crit Care Med. 2015; 191: 894-901Crossref PubMed Scopus (449) Google Scholar]. Maintaining an ECMO program requires a sophisticated network of nurses, perfusionists, respiratory therapists, emergency medicine physicians, respiratory physicians, cardiologists, and intensivists, all specially trained in ECMO management [[22]Barbaro R.P. Odetola F.O. Kidwell K.M. Paden M.L. Bartlett R.H. Davis M.M. et al.Association of hospital-level volume of extracorporeal membrane oxygenation cases and mortality. Analysis of the extracorporeal life support organization registry.Am J Respir Crit Care Med. 2015; 191: 894-901Crossref PubMed Scopus (449) Google Scholar]. Particularly in hospitals where ECMO cases are rare, maintaining an ECMO program can be expensive and inefficient [[22]Barbaro R.P. Odetola F.O. Kidwell K.M. Paden M.L. Bartlett R.H. Davis M.M. et al.Association of hospital-level volume of extracorporeal membrane oxygenation cases and mortality. Analysis of the extracorporeal life support organization registry.Am J Respir Crit Care Med. 2015; 191: 894-901Crossref PubMed Scopus (449) Google Scholar]. High volume centres have the resources and case volume to not only financially justify an ECMO program but also maintain a staff of trained, competent clinicians with ample experience caring for patients requiring ECMO support. Beyond triaging patients requiring ECMO support to high volume medical centres, further specialisation into dedicated ECMO units has proven to be effective. A lung rescue unit (LRU) at the University of Maryland Shock Trauma Center is one of the first units of its kind. Opened in 2015, the LRU is an ICU exclusively reserved for adult patients requiring VV-ECMO for respiratory failure [[21]Menaker J. Dolly K. Rector R. Kufera J. Lee E.E. Tabatabai A. et al.The lung rescue unit-Does a dedicated intensive care unit for venovenous extracorporeal membrane oxygenation improve survival to discharge?.J Trauma Acute Care Surg. 2017; 83: 438-442Crossref PubMed Scopus (21) Google Scholar]. The incredibly specialised nature of this unit allows the clinicians that work there to quickly develop and maintain competencies in caring for patients on VV-ECMO. In its first year, the LRU improved the hospital’s survival rate from 50% to 71% [[21]Menaker J. Dolly K. Rector R. Kufera J. Lee E.E. Tabatabai A. et al.The lung rescue unit-Does a dedicated intensive care unit for venovenous extracorporeal membrane oxygenation improve survival to discharge?.J Trauma Acute Care Surg. 2017; 83: 438-442Crossref PubMed Scopus (21) Google Scholar]. While this model is not sustainable for all hospitals, large, academic medical centres with steady streams of patients requiring VV-ECMO support could more efficiently manage staff and resources without sacrificing quality of care by adopting this model. Especially in the context of the COVID-19 pandemic, expanding capacity for ECMO usage is of critical importance. Current World Health Organization recommendations include the use of ECMO in the treatment of COVID-19 associated ARDS when conventional mechanical ventilation is insufficient [[5]Barbaro R.P. MacLaren G. Boonstra P.S. Iwashyna T.J. Slutsky A.S. Fan E. et al.Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry.Lancet. 2020; 396: 1071-1078Abstract Full Text Full Text PDF PubMed Scopus (541) Google Scholar]. While there is no up-to-date, published data regarding the number of patients who have received VV-ECMO during the COVID pandemic, the data shared through the ELSO COVID dashboard suggests that nearly 5,000 adults have received VV-ECMO support as a result of COVID-19 infection world-wide [[23]Extracorporeal Life Support Organization (ELSO)COVID-19 Registry Dashboard.https://www.elso.org/Registry/FullCOVID19RegistryDashboard.aspxDate accessed: February 21, 2021Google Scholar]. This increased usage highlights the importance of expanding capacity to meet the needs of the world’s population and demands attention to workforce and procedural volume issues [[16]Ramanathan K. Antognini D. Combes A. Paden M. Zakhary B. Ogino M. et al.Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases.Lancet Respir Med. 2020; 8: 518-526Abstract Full Text Full Text PDF PubMed Scopus (366) Google Scholar]. As cases soar, more people require ECMO support, and triaged resource allocation becomes a reality: strategies to expand capacity are even more necessary [[24]Murugappan K.R. Walsh D.P. Mittel A. Sontag D. Shaefi S. Veno-venous extracorporeal membrane oxygenation allocation in the COVID-19 pandemic.J Crit Care. 2020; 61: 221-226Crossref PubMed Scopus (14) Google Scholar]. Wang and colleagues make a useful contribution to the literature, particularly in the context of the COVID-19 pandemic [[4]Wang J. Wang Y. Wang T. Xing X. Zhang G. Is extracorporeal membrane oxygenation the standard care for acute respiratory distress syndrome: a systematic review and eta-Analysis.Heart Lung Circ. 2021; 30: 631-641Abstract Full Text Full Text PDF Scopus (6) Google Scholar]. Increases in ECMO for the treatment of ARDS will require clinicians and medical centres to develop strategies to maximise patient safety and quality of care [[20]Cavarocchi N. Wallace S. Hong E.Y. Tropea A. Byrne J. A cost-reducing extracorporeal membrane oxygenation (ECMO) program model: a single institution experience.Perfusion. 2015; Crossref Scopus (28) Google Scholar]. Risk stratification, skill enhancement of all health workers, expanding nurses’ roles, and specialised ECMO centres are examples of ways to expand capacity for providing ECMO support. Given the emerging data on the importance of ECMO in ARDS, careful attention to workforce issues is timely and important. None. None." @default.
- W3134788963 created "2021-03-15" @default.
- W3134788963 creator A5042638380 @default.
- W3134788963 creator A5050437153 @default.
- W3134788963 creator A5055244895 @default.
- W3134788963 creator A5084745426 @default.
- W3134788963 date "2021-05-01" @default.
- W3134788963 modified "2023-09-29" @default.
- W3134788963 title "Extracorporeal Membrane Oxygenation in Acute Respiratory Distress Syndrome: How Do We Expand Capacity in the COVID-19 Era?" @default.
- W3134788963 cites W2002171986 @default.
- W3134788963 cites W2021046603 @default.
- W3134788963 cites W2112733348 @default.
- W3134788963 cites W2165852759 @default.
- W3134788963 cites W2326799228 @default.
- W3134788963 cites W2523614563 @default.
- W3134788963 cites W2587659527 @default.
- W3134788963 cites W2606767966 @default.
- W3134788963 cites W2738587788 @default.
- W3134788963 cites W2771310921 @default.
- W3134788963 cites W2803603947 @default.
- W3134788963 cites W2804479356 @default.
- W3134788963 cites W2804845261 @default.
- W3134788963 cites W2909355137 @default.
- W3134788963 cites W2911047707 @default.
- W3134788963 cites W2944849621 @default.
- W3134788963 cites W2977044746 @default.
- W3134788963 cites W3012186724 @default.
- W3134788963 cites W3089328061 @default.
- W3134788963 cites W3094857204 @default.
- W3134788963 cites W3101272847 @default.
- W3134788963 doi "https://doi.org/10.1016/j.hlc.2021.03.001" @default.
- W3134788963 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7927577" @default.
- W3134788963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33707137" @default.
- W3134788963 hasPublicationYear "2021" @default.
- W3134788963 type Work @default.
- W3134788963 sameAs 3134788963 @default.
- W3134788963 citedByCount "2" @default.
- W3134788963 countsByYear W31347889632021 @default.
- W3134788963 countsByYear W31347889632022 @default.
- W3134788963 crossrefType "journal-article" @default.
- W3134788963 hasAuthorship W3134788963A5042638380 @default.
- W3134788963 hasAuthorship W3134788963A5050437153 @default.
- W3134788963 hasAuthorship W3134788963A5055244895 @default.
- W3134788963 hasAuthorship W3134788963A5084745426 @default.
- W3134788963 hasBestOaLocation W31347889631 @default.
- W3134788963 hasConcept C116675565 @default.
- W3134788963 hasConcept C126322002 @default.
- W3134788963 hasConcept C159047783 @default.
- W3134788963 hasConcept C164705383 @default.
- W3134788963 hasConcept C177713679 @default.
- W3134788963 hasConcept C2776858399 @default.
- W3134788963 hasConcept C2777714996 @default.
- W3134788963 hasConcept C2779134260 @default.
- W3134788963 hasConcept C2909621147 @default.
- W3134788963 hasConcept C3006700255 @default.
- W3134788963 hasConcept C3007834351 @default.
- W3134788963 hasConcept C3008058167 @default.
- W3134788963 hasConcept C42219234 @default.
- W3134788963 hasConcept C524204448 @default.
- W3134788963 hasConcept C70289976 @default.
- W3134788963 hasConcept C71924100 @default.
- W3134788963 hasConceptScore W3134788963C116675565 @default.
- W3134788963 hasConceptScore W3134788963C126322002 @default.
- W3134788963 hasConceptScore W3134788963C159047783 @default.
- W3134788963 hasConceptScore W3134788963C164705383 @default.
- W3134788963 hasConceptScore W3134788963C177713679 @default.
- W3134788963 hasConceptScore W3134788963C2776858399 @default.
- W3134788963 hasConceptScore W3134788963C2777714996 @default.
- W3134788963 hasConceptScore W3134788963C2779134260 @default.
- W3134788963 hasConceptScore W3134788963C2909621147 @default.
- W3134788963 hasConceptScore W3134788963C3006700255 @default.
- W3134788963 hasConceptScore W3134788963C3007834351 @default.
- W3134788963 hasConceptScore W3134788963C3008058167 @default.
- W3134788963 hasConceptScore W3134788963C42219234 @default.
- W3134788963 hasConceptScore W3134788963C524204448 @default.
- W3134788963 hasConceptScore W3134788963C70289976 @default.
- W3134788963 hasConceptScore W3134788963C71924100 @default.
- W3134788963 hasIssue "5" @default.
- W3134788963 hasLocation W31347889631 @default.
- W3134788963 hasLocation W31347889632 @default.
- W3134788963 hasOpenAccess W3134788963 @default.
- W3134788963 hasPrimaryLocation W31347889631 @default.
- W3134788963 hasRelatedWork W3009669391 @default.
- W3134788963 hasRelatedWork W3032657464 @default.
- W3134788963 hasRelatedWork W3036314732 @default.
- W3134788963 hasRelatedWork W3080826687 @default.
- W3134788963 hasRelatedWork W3090948027 @default.
- W3134788963 hasRelatedWork W4200329650 @default.
- W3134788963 hasRelatedWork W4205317059 @default.
- W3134788963 hasRelatedWork W4206669628 @default.
- W3134788963 hasRelatedWork W4281401258 @default.
- W3134788963 hasRelatedWork W3127156785 @default.
- W3134788963 hasVolume "30" @default.
- W3134788963 isParatext "false" @default.
- W3134788963 isRetracted "false" @default.
- W3134788963 magId "3134788963" @default.
- W3134788963 workType "article" @default.