Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134793178> ?p ?o ?g. }
- W3134793178 endingPage "771" @default.
- W3134793178 startingPage "760" @default.
- W3134793178 abstract "As the market share of electric vehicles increases, the associated charging infrastructure must be further developed to meet the growing demand for charging. While stationary plug-in methods have been the traditional approach to satisfying this demand, in-motion charging technologies have the potential to eliminate the inconvenience of long charging wait times and the high cost of large batteries. In this research, an agent-based model is developed to simulate vehicle charging demand and then validated against real traffic data. Driver behavior is estimated from travel survey data, and a method is introduced to estimate route-planning decisions in the presence of multiple charging options. The model is technology agnostic, allowing for its application to any kind of in-motion charging technology (i.e., inductive, conductive, and capacitive). A genetic algorithm is used to optimize the location of roadways with dynamic charging capabilities in the presence of the existing charging infrastructure. Both major highways and arterial roads were considered as potential candidates for dynamic charger installation. Results are presented for a case study in Salt Lake County, Utah." @default.
- W3134793178 created "2021-03-15" @default.
- W3134793178 creator A5031256021 @default.
- W3134793178 creator A5048089224 @default.
- W3134793178 date "2021-12-01" @default.
- W3134793178 modified "2023-10-01" @default.
- W3134793178 title "Infrastructure Optimization of In-Motion Charging Networks for Electric Vehicles Using Agent-Based Modeling" @default.
- W3134793178 cites W1181333096 @default.
- W3134793178 cites W1501461456 @default.
- W3134793178 cites W174054909 @default.
- W3134793178 cites W1843657234 @default.
- W3134793178 cites W1906109559 @default.
- W3134793178 cites W1924603683 @default.
- W3134793178 cites W1944473785 @default.
- W3134793178 cites W1966310868 @default.
- W3134793178 cites W1967169403 @default.
- W3134793178 cites W1990017518 @default.
- W3134793178 cites W1998338993 @default.
- W3134793178 cites W2013883367 @default.
- W3134793178 cites W2028276056 @default.
- W3134793178 cites W2028808891 @default.
- W3134793178 cites W2036090452 @default.
- W3134793178 cites W2037682636 @default.
- W3134793178 cites W2043181301 @default.
- W3134793178 cites W2071806120 @default.
- W3134793178 cites W2072061981 @default.
- W3134793178 cites W2073037901 @default.
- W3134793178 cites W2074599133 @default.
- W3134793178 cites W2081677832 @default.
- W3134793178 cites W2090089841 @default.
- W3134793178 cites W2100508296 @default.
- W3134793178 cites W2102875787 @default.
- W3134793178 cites W2150704630 @default.
- W3134793178 cites W2158565022 @default.
- W3134793178 cites W2162427505 @default.
- W3134793178 cites W2164613149 @default.
- W3134793178 cites W2170386410 @default.
- W3134793178 cites W2191700574 @default.
- W3134793178 cites W2326600353 @default.
- W3134793178 cites W2342814905 @default.
- W3134793178 cites W2414479368 @default.
- W3134793178 cites W2482454139 @default.
- W3134793178 cites W2490270241 @default.
- W3134793178 cites W2582132117 @default.
- W3134793178 cites W2585215552 @default.
- W3134793178 cites W2586641207 @default.
- W3134793178 cites W2591041453 @default.
- W3134793178 cites W2714505431 @default.
- W3134793178 cites W2766592377 @default.
- W3134793178 cites W2805606752 @default.
- W3134793178 cites W2810384774 @default.
- W3134793178 cites W2945057729 @default.
- W3134793178 cites W2948650589 @default.
- W3134793178 cites W2964151984 @default.
- W3134793178 doi "https://doi.org/10.1109/tiv.2021.3064549" @default.
- W3134793178 hasPublicationYear "2021" @default.
- W3134793178 type Work @default.
- W3134793178 sameAs 3134793178 @default.
- W3134793178 citedByCount "7" @default.
- W3134793178 countsByYear W31347931782023 @default.
- W3134793178 crossrefType "journal-article" @default.
- W3134793178 hasAuthorship W3134793178A5031256021 @default.
- W3134793178 hasAuthorship W3134793178A5048089224 @default.
- W3134793178 hasConcept C119857082 @default.
- W3134793178 hasConcept C121332964 @default.
- W3134793178 hasConcept C127413603 @default.
- W3134793178 hasConcept C163258240 @default.
- W3134793178 hasConcept C171146098 @default.
- W3134793178 hasConcept C199360897 @default.
- W3134793178 hasConcept C22212356 @default.
- W3134793178 hasConcept C2776422217 @default.
- W3134793178 hasConcept C41008148 @default.
- W3134793178 hasConcept C44154836 @default.
- W3134793178 hasConcept C4924752 @default.
- W3134793178 hasConcept C62520636 @default.
- W3134793178 hasConcept C79403827 @default.
- W3134793178 hasConcept C8880873 @default.
- W3134793178 hasConceptScore W3134793178C119857082 @default.
- W3134793178 hasConceptScore W3134793178C121332964 @default.
- W3134793178 hasConceptScore W3134793178C127413603 @default.
- W3134793178 hasConceptScore W3134793178C163258240 @default.
- W3134793178 hasConceptScore W3134793178C171146098 @default.
- W3134793178 hasConceptScore W3134793178C199360897 @default.
- W3134793178 hasConceptScore W3134793178C22212356 @default.
- W3134793178 hasConceptScore W3134793178C2776422217 @default.
- W3134793178 hasConceptScore W3134793178C41008148 @default.
- W3134793178 hasConceptScore W3134793178C44154836 @default.
- W3134793178 hasConceptScore W3134793178C4924752 @default.
- W3134793178 hasConceptScore W3134793178C62520636 @default.
- W3134793178 hasConceptScore W3134793178C79403827 @default.
- W3134793178 hasConceptScore W3134793178C8880873 @default.
- W3134793178 hasFunder F4320309594 @default.
- W3134793178 hasIssue "4" @default.
- W3134793178 hasLocation W31347931781 @default.
- W3134793178 hasOpenAccess W3134793178 @default.
- W3134793178 hasPrimaryLocation W31347931781 @default.
- W3134793178 hasRelatedWork W2039171704 @default.
- W3134793178 hasRelatedWork W2103186930 @default.