Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134797301> ?p ?o ?g. }
- W3134797301 endingPage "271" @default.
- W3134797301 startingPage "260" @default.
- W3134797301 abstract "Movement disorder of Parkinson’s disease (PD) is usually quantified by the Movement Disorders Society-sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) to evaluate its severity. However, the lack of well-trained experts and subjective inter-rater variability often limit an effective and objective assessment in clinical practice. Hence, developing an automated assessment method for movement disorders in PD is crucial. Here, we present a novel vision-based fine-grained action recognition model to cope with one of the most critical and challenging tasks in clinical scales: the finger-tapping test. Specifically, we establish a three-stream fine-grained classification network with a Markov chain fusion model to aggregate multi-stream information of the skeleton sequence from finger-tapping test videos. Then, we develop a spatial–temporal attention mechanism to capture rich spatial and temporal long-range dependencies from skeleton data and introduce a symmetric bilinear pooling layer to enrich the local feature representation of each stream’s output. Besides, a mini-batch-based balanced algorithm is designed to ensure that the samples in each mini-batch are inter-class balanced, thus mitigating the effect of imbalanced data on neural networks. Finally, our three-stream fine-grained classification network achieved an accuracy of 72.4% and an acceptable accuracy of 98.3% on 157 patients and 744 videos. Extensive experiments further confirm our approach’s effectiveness and reliability. This method does not require any wearable device and has excellent potential for remote monitoring of PD patients in the future." @default.
- W3134797301 created "2021-03-15" @default.
- W3134797301 creator A5004318775 @default.
- W3134797301 creator A5008771137 @default.
- W3134797301 creator A5063759279 @default.
- W3134797301 creator A5077918214 @default.
- W3134797301 date "2021-06-01" @default.
- W3134797301 modified "2023-10-10" @default.
- W3134797301 title "Automated assessment of Parkinsonian finger-tapping tests through a vision-based fine-grained classification model" @default.
- W3134797301 cites W1533056363 @default.
- W3134797301 cites W1933560451 @default.
- W3134797301 cites W1972702299 @default.
- W3134797301 cites W1983802226 @default.
- W3134797301 cites W1995528414 @default.
- W3134797301 cites W2013468174 @default.
- W3134797301 cites W2021086790 @default.
- W3134797301 cites W2026015772 @default.
- W3134797301 cites W2029257328 @default.
- W3134797301 cites W2045913053 @default.
- W3134797301 cites W2084553926 @default.
- W3134797301 cites W2108421430 @default.
- W3134797301 cites W2109606373 @default.
- W3134797301 cites W2139998449 @default.
- W3134797301 cites W2140978740 @default.
- W3134797301 cites W2151455241 @default.
- W3134797301 cites W2155150111 @default.
- W3134797301 cites W2162659118 @default.
- W3134797301 cites W2315256732 @default.
- W3134797301 cites W2338537628 @default.
- W3134797301 cites W2415469094 @default.
- W3134797301 cites W2538314104 @default.
- W3134797301 cites W2559085405 @default.
- W3134797301 cites W2582733512 @default.
- W3134797301 cites W2584561145 @default.
- W3134797301 cites W2739915297 @default.
- W3134797301 cites W2800456713 @default.
- W3134797301 cites W2895643041 @default.
- W3134797301 cites W2914619209 @default.
- W3134797301 cites W2946147514 @default.
- W3134797301 cites W2963076818 @default.
- W3134797301 cites W2963351448 @default.
- W3134797301 cites W2964134613 @default.
- W3134797301 cites W2965798135 @default.
- W3134797301 cites W2972279824 @default.
- W3134797301 cites W2999237480 @default.
- W3134797301 cites W3001897055 @default.
- W3134797301 cites W3042638361 @default.
- W3134797301 cites W3044138220 @default.
- W3134797301 cites W3104444915 @default.
- W3134797301 doi "https://doi.org/10.1016/j.neucom.2021.02.011" @default.
- W3134797301 hasPublicationYear "2021" @default.
- W3134797301 type Work @default.
- W3134797301 sameAs 3134797301 @default.
- W3134797301 citedByCount "16" @default.
- W3134797301 countsByYear W31347973012021 @default.
- W3134797301 countsByYear W31347973012022 @default.
- W3134797301 countsByYear W31347973012023 @default.
- W3134797301 crossrefType "journal-article" @default.
- W3134797301 hasAuthorship W3134797301A5004318775 @default.
- W3134797301 hasAuthorship W3134797301A5008771137 @default.
- W3134797301 hasAuthorship W3134797301A5063759279 @default.
- W3134797301 hasAuthorship W3134797301A5077918214 @default.
- W3134797301 hasConcept C119857082 @default.
- W3134797301 hasConcept C121332964 @default.
- W3134797301 hasConcept C153180895 @default.
- W3134797301 hasConcept C154945302 @default.
- W3134797301 hasConcept C163258240 @default.
- W3134797301 hasConcept C2992114214 @default.
- W3134797301 hasConcept C41008148 @default.
- W3134797301 hasConcept C43214815 @default.
- W3134797301 hasConcept C548259974 @default.
- W3134797301 hasConcept C62520636 @default.
- W3134797301 hasConcept C70437156 @default.
- W3134797301 hasConcept C71924100 @default.
- W3134797301 hasConceptScore W3134797301C119857082 @default.
- W3134797301 hasConceptScore W3134797301C121332964 @default.
- W3134797301 hasConceptScore W3134797301C153180895 @default.
- W3134797301 hasConceptScore W3134797301C154945302 @default.
- W3134797301 hasConceptScore W3134797301C163258240 @default.
- W3134797301 hasConceptScore W3134797301C2992114214 @default.
- W3134797301 hasConceptScore W3134797301C41008148 @default.
- W3134797301 hasConceptScore W3134797301C43214815 @default.
- W3134797301 hasConceptScore W3134797301C548259974 @default.
- W3134797301 hasConceptScore W3134797301C62520636 @default.
- W3134797301 hasConceptScore W3134797301C70437156 @default.
- W3134797301 hasConceptScore W3134797301C71924100 @default.
- W3134797301 hasLocation W31347973011 @default.
- W3134797301 hasOpenAccess W3134797301 @default.
- W3134797301 hasPrimaryLocation W31347973011 @default.
- W3134797301 hasRelatedWork W2291847203 @default.
- W3134797301 hasRelatedWork W2758063741 @default.
- W3134797301 hasRelatedWork W2940661641 @default.
- W3134797301 hasRelatedWork W2944724518 @default.
- W3134797301 hasRelatedWork W2951391129 @default.
- W3134797301 hasRelatedWork W2969680539 @default.
- W3134797301 hasRelatedWork W3093454656 @default.
- W3134797301 hasRelatedWork W3097056957 @default.
- W3134797301 hasRelatedWork W4225258897 @default.