Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134797365> ?p ?o ?g. }
- W3134797365 endingPage "2842" @default.
- W3134797365 startingPage "2842" @default.
- W3134797365 abstract "Since December 2019, the world has been devastated by the Coronavirus Disease 2019 (COVID-19) pandemic. Emergency Departments have been experiencing situations of urgency where clinical experts, without long experience and mature means in the fight against COVID-19, have to rapidly decide the most proper patient treatment. In this context, we introduce an artificially intelligent tool for effective and efficient Computed Tomography (CT)-based risk assessment to improve treatment and patient care. In this paper, we introduce a data-driven approach built on top of volume-of-interest aware deep neural networks for automatic COVID-19 patient risk assessment (discharged, hospitalized, intensive care unit) based on lung infection quantization through segmentation and, subsequently, CT classification. We tackle the high and varying dimensionality of the CT input by detecting and analyzing only a sub-volume of the CT, the Volume-of-Interest (VoI). Differently from recent strategies that consider infected CT slices without requiring any spatial coherency between them, or use the whole lung volume by applying abrupt and lossy volume down-sampling, we assess only the “most infected volume” composed of slices at its original spatial resolution. To achieve the above, we create, present and publish a new labeled and annotated CT dataset with 626 CT samples from COVID-19 patients. The comparison against such strategies proves the effectiveness of our VoI-based approach. We achieve remarkable performance on patient risk assessment evaluated on balanced data by reaching 88.88%, 89.77%, 94.73% and 88.88% accuracy, sensitivity, specificity and F1-score, respectively." @default.
- W3134797365 created "2021-03-15" @default.
- W3134797365 creator A5001013723 @default.
- W3134797365 creator A5006823858 @default.
- W3134797365 creator A5006969393 @default.
- W3134797365 creator A5008599877 @default.
- W3134797365 creator A5020920439 @default.
- W3134797365 creator A5021388501 @default.
- W3134797365 creator A5021461498 @default.
- W3134797365 creator A5026423770 @default.
- W3134797365 creator A5031581330 @default.
- W3134797365 creator A5033309520 @default.
- W3134797365 creator A5034457770 @default.
- W3134797365 creator A5045022018 @default.
- W3134797365 creator A5046861581 @default.
- W3134797365 creator A5059371850 @default.
- W3134797365 creator A5059708050 @default.
- W3134797365 creator A5070356591 @default.
- W3134797365 creator A5071432733 @default.
- W3134797365 creator A5071585254 @default.
- W3134797365 creator A5071768096 @default.
- W3134797365 creator A5074502875 @default.
- W3134797365 creator A5076315708 @default.
- W3134797365 creator A5079939753 @default.
- W3134797365 creator A5086871368 @default.
- W3134797365 creator A5089626999 @default.
- W3134797365 date "2021-03-11" @default.
- W3134797365 modified "2023-09-25" @default.
- W3134797365 title "Volume-of-Interest Aware Deep Neural Networks for Rapid Chest CT-Based COVID-19 Patient Risk Assessment" @default.
- W3134797365 cites W2008056655 @default.
- W3134797365 cites W2590150025 @default.
- W3134797365 cites W2885303411 @default.
- W3134797365 cites W2905810301 @default.
- W3134797365 cites W2911964244 @default.
- W3134797365 cites W2923175165 @default.
- W3134797365 cites W2944480979 @default.
- W3134797365 cites W2946185430 @default.
- W3134797365 cites W2967445385 @default.
- W3134797365 cites W2997422821 @default.
- W3134797365 cites W3001897055 @default.
- W3134797365 cites W3003668884 @default.
- W3134797365 cites W3004825562 @default.
- W3134797365 cites W3004906315 @default.
- W3134797365 cites W3005487212 @default.
- W3134797365 cites W3006082171 @default.
- W3134797365 cites W3006110666 @default.
- W3134797365 cites W3011127849 @default.
- W3134797365 cites W3011149445 @default.
- W3134797365 cites W3011716991 @default.
- W3134797365 cites W3014524604 @default.
- W3134797365 cites W3019336217 @default.
- W3134797365 cites W3022882668 @default.
- W3134797365 cites W3024575832 @default.
- W3134797365 cites W3025948831 @default.
- W3134797365 cites W3027763298 @default.
- W3134797365 cites W3037538421 @default.
- W3134797365 cites W3037791009 @default.
- W3134797365 cites W3045596310 @default.
- W3134797365 cites W3049757379 @default.
- W3134797365 cites W3081689004 @default.
- W3134797365 cites W3081737265 @default.
- W3134797365 cites W3087000505 @default.
- W3134797365 cites W3088122790 @default.
- W3134797365 cites W3093272769 @default.
- W3134797365 cites W3093455605 @default.
- W3134797365 cites W3096413426 @default.
- W3134797365 cites W3100321043 @default.
- W3134797365 cites W3116318880 @default.
- W3134797365 cites W3125771089 @default.
- W3134797365 doi "https://doi.org/10.3390/ijerph18062842" @default.
- W3134797365 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7998401" @default.
- W3134797365 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33799509" @default.
- W3134797365 hasPublicationYear "2021" @default.
- W3134797365 type Work @default.
- W3134797365 sameAs 3134797365 @default.
- W3134797365 citedByCount "7" @default.
- W3134797365 countsByYear W31347973652021 @default.
- W3134797365 countsByYear W31347973652022 @default.
- W3134797365 crossrefType "journal-article" @default.
- W3134797365 hasAuthorship W3134797365A5001013723 @default.
- W3134797365 hasAuthorship W3134797365A5006823858 @default.
- W3134797365 hasAuthorship W3134797365A5006969393 @default.
- W3134797365 hasAuthorship W3134797365A5008599877 @default.
- W3134797365 hasAuthorship W3134797365A5020920439 @default.
- W3134797365 hasAuthorship W3134797365A5021388501 @default.
- W3134797365 hasAuthorship W3134797365A5021461498 @default.
- W3134797365 hasAuthorship W3134797365A5026423770 @default.
- W3134797365 hasAuthorship W3134797365A5031581330 @default.
- W3134797365 hasAuthorship W3134797365A5033309520 @default.
- W3134797365 hasAuthorship W3134797365A5034457770 @default.
- W3134797365 hasAuthorship W3134797365A5045022018 @default.
- W3134797365 hasAuthorship W3134797365A5046861581 @default.
- W3134797365 hasAuthorship W3134797365A5059371850 @default.
- W3134797365 hasAuthorship W3134797365A5059708050 @default.
- W3134797365 hasAuthorship W3134797365A5070356591 @default.
- W3134797365 hasAuthorship W3134797365A5071432733 @default.
- W3134797365 hasAuthorship W3134797365A5071585254 @default.
- W3134797365 hasAuthorship W3134797365A5071768096 @default.