Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134851390> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3134851390 endingPage "e10549" @default.
- W3134851390 startingPage "e10549" @default.
- W3134851390 abstract "Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, accounting for nearly 60% of all dementia cases. The occurrence of the disease has been increasing rapidly in recent years. Presently about 46.8 million individuals suffer from AD worldwide. The current absence of effective treatment to reverse or stop AD progression highlights the importance of disease prevention and early diagnosis. Brain structural Magnetic Resonance Imaging (MRI) has been widely used for AD detection as it can display morphometric differences and cerebral structural changes. In this study, we built three machine learning-based MRI data classifiers to predict AD and infer the brain regions that contribute to disease development and progression. We then systematically compared the three distinct classifiers, which were constructed based on Support Vector Machine (SVM), 3D Very Deep Convolutional Network (VGGNet) and 3D Deep Residual Network (ResNet), respectively. To improve the performance of the deep learning classifiers, we applied a transfer learning strategy. The weights of a pre-trained model were transferred and adopted as the initial weights of our models. Transferring the learned features significantly reduced training time and increased network efficiency. The classification accuracy for AD subjects from elderly control subjects was 90%, 95%, and 95% for the SVM, VGGNet and ResNet classifiers, respectively. Gradient-weighted Class Activation Mapping (Grad-CAM) was employed to show discriminative regions that contributed most to the AD classification by utilizing the learned spatial information of the 3D-VGGNet and 3D-ResNet models. The resulted maps consistently highlighted several disease-associated brain regions, particularly the cerebellum which is a relatively neglected brain region in the present AD study. Overall, our comparisons suggested that the ResNet model provided the best classification performance as well as more accurate localization of disease-associated regions in the brain compared to the other two approaches." @default.
- W3134851390 created "2021-03-15" @default.
- W3134851390 creator A5078652209 @default.
- W3134851390 creator A5087539432 @default.
- W3134851390 date "2021-02-25" @default.
- W3134851390 modified "2023-10-18" @default.
- W3134851390 title "Comparison of machine learning approaches for enhancing Alzheimer’s disease classification" @default.
- W3134851390 cites W1550018017 @default.
- W3134851390 cites W2010432070 @default.
- W3134851390 cites W2054540100 @default.
- W3134851390 cites W2062860346 @default.
- W3134851390 cites W2115424422 @default.
- W3134851390 cites W2117340355 @default.
- W3134851390 cites W2120658493 @default.
- W3134851390 cites W2143017382 @default.
- W3134851390 cites W2148686428 @default.
- W3134851390 cites W2171808809 @default.
- W3134851390 cites W2205961273 @default.
- W3134851390 cites W2275905635 @default.
- W3134851390 cites W2592343442 @default.
- W3134851390 cites W2613409207 @default.
- W3134851390 cites W2626513856 @default.
- W3134851390 cites W2737584517 @default.
- W3134851390 cites W2740893736 @default.
- W3134851390 cites W2749983284 @default.
- W3134851390 cites W2765366332 @default.
- W3134851390 cites W2781705645 @default.
- W3134851390 cites W2782326402 @default.
- W3134851390 cites W2782327081 @default.
- W3134851390 cites W2900386946 @default.
- W3134851390 cites W2905035821 @default.
- W3134851390 cites W2911551274 @default.
- W3134851390 cites W2964350391 @default.
- W3134851390 cites W2964629181 @default.
- W3134851390 doi "https://doi.org/10.7717/peerj.10549" @default.
- W3134851390 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7916537" @default.
- W3134851390 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33665002" @default.
- W3134851390 hasPublicationYear "2021" @default.
- W3134851390 type Work @default.
- W3134851390 sameAs 3134851390 @default.
- W3134851390 citedByCount "3" @default.
- W3134851390 countsByYear W31348513902022 @default.
- W3134851390 countsByYear W31348513902023 @default.
- W3134851390 crossrefType "journal-article" @default.
- W3134851390 hasAuthorship W3134851390A5078652209 @default.
- W3134851390 hasAuthorship W3134851390A5087539432 @default.
- W3134851390 hasBestOaLocation W31348513901 @default.
- W3134851390 hasConcept C108583219 @default.
- W3134851390 hasConcept C119857082 @default.
- W3134851390 hasConcept C12267149 @default.
- W3134851390 hasConcept C142724271 @default.
- W3134851390 hasConcept C153180895 @default.
- W3134851390 hasConcept C154945302 @default.
- W3134851390 hasConcept C2779134260 @default.
- W3134851390 hasConcept C2779483572 @default.
- W3134851390 hasConcept C2944601119 @default.
- W3134851390 hasConcept C41008148 @default.
- W3134851390 hasConcept C71924100 @default.
- W3134851390 hasConcept C97931131 @default.
- W3134851390 hasConceptScore W3134851390C108583219 @default.
- W3134851390 hasConceptScore W3134851390C119857082 @default.
- W3134851390 hasConceptScore W3134851390C12267149 @default.
- W3134851390 hasConceptScore W3134851390C142724271 @default.
- W3134851390 hasConceptScore W3134851390C153180895 @default.
- W3134851390 hasConceptScore W3134851390C154945302 @default.
- W3134851390 hasConceptScore W3134851390C2779134260 @default.
- W3134851390 hasConceptScore W3134851390C2779483572 @default.
- W3134851390 hasConceptScore W3134851390C2944601119 @default.
- W3134851390 hasConceptScore W3134851390C41008148 @default.
- W3134851390 hasConceptScore W3134851390C71924100 @default.
- W3134851390 hasConceptScore W3134851390C97931131 @default.
- W3134851390 hasFunder F4320337354 @default.
- W3134851390 hasLocation W31348513901 @default.
- W3134851390 hasLocation W31348513902 @default.
- W3134851390 hasLocation W31348513903 @default.
- W3134851390 hasOpenAccess W3134851390 @default.
- W3134851390 hasPrimaryLocation W31348513901 @default.
- W3134851390 hasRelatedWork W1652783584 @default.
- W3134851390 hasRelatedWork W1990254706 @default.
- W3134851390 hasRelatedWork W2024160000 @default.
- W3134851390 hasRelatedWork W2353457699 @default.
- W3134851390 hasRelatedWork W2404514746 @default.
- W3134851390 hasRelatedWork W2729514902 @default.
- W3134851390 hasRelatedWork W2803710604 @default.
- W3134851390 hasRelatedWork W3136979370 @default.
- W3134851390 hasRelatedWork W4285106639 @default.
- W3134851390 hasRelatedWork W4311106074 @default.
- W3134851390 hasVolume "9" @default.
- W3134851390 isParatext "false" @default.
- W3134851390 isRetracted "false" @default.
- W3134851390 magId "3134851390" @default.
- W3134851390 workType "article" @default.