Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134865308> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3134865308 endingPage "29" @default.
- W3134865308 startingPage "20" @default.
- W3134865308 abstract "Bayesian network is a frequently-used uncertainty reasoning method, which systematically describes relations between random variables. Dynamic Bayesian network is an extension of Bayesian network, which contains the relations between variables at different times. Soft sensor is an important industrial application, in which feature variables are selected to predict the value of the target variables. For industrial soft sensor applications, dynamics is still a tough problem, particularly together with the uncertain feature of process data. In this article, DBN is employed for dynamic variable structure learning and transfer modeling to some strong regression models to build a soft sensor for dynamic industrial processes. At the beginning, a series of dynamic Bayesian networks are constructed on the training set with a sliding window. From these network structures we can find variables related to the quality variables. Then, in each time period, a sequence of data is compared with training data to select the most similar sequence by Dynamic Time Warping. Therefore, the structure of variables is built, i.e., the related feature variables of the quality variables can be determined by the network structure. In the regression step, the dynamic variable structure is transferred to some strong regressors, like Support Vector Regression and Adaboost for further regression. In case study, we use the debutanizer process and a low temperature transformer case to confirm the quality of the soft sensor method. The result reveals that, the prediction accuracy of the new method is much higher than the original commonly-used regression methods." @default.
- W3134865308 created "2021-03-15" @default.
- W3134865308 creator A5047819676 @default.
- W3134865308 creator A5067726465 @default.
- W3134865308 date "2021-04-01" @default.
- W3134865308 modified "2023-10-18" @default.
- W3134865308 title "Bayesian network for dynamic variable structure learning and transfer modeling of probabilistic soft sensor" @default.
- W3134865308 cites W1964489763 @default.
- W3134865308 cites W2000651380 @default.
- W3134865308 cites W2007864746 @default.
- W3134865308 cites W2055840446 @default.
- W3134865308 cites W2063100141 @default.
- W3134865308 cites W2070310686 @default.
- W3134865308 cites W2071126205 @default.
- W3134865308 cites W2076423279 @default.
- W3134865308 cites W2083890307 @default.
- W3134865308 cites W2165190832 @default.
- W3134865308 cites W2563109028 @default.
- W3134865308 cites W2582860853 @default.
- W3134865308 cites W2584027124 @default.
- W3134865308 cites W2765871399 @default.
- W3134865308 cites W2768613868 @default.
- W3134865308 cites W2791748024 @default.
- W3134865308 cites W2889017122 @default.
- W3134865308 cites W2903801375 @default.
- W3134865308 cites W2967723820 @default.
- W3134865308 cites W3003166104 @default.
- W3134865308 cites W3004547709 @default.
- W3134865308 cites W3123899295 @default.
- W3134865308 doi "https://doi.org/10.1016/j.jprocont.2021.02.004" @default.
- W3134865308 hasPublicationYear "2021" @default.
- W3134865308 type Work @default.
- W3134865308 sameAs 3134865308 @default.
- W3134865308 citedByCount "9" @default.
- W3134865308 countsByYear W31348653082021 @default.
- W3134865308 countsByYear W31348653082022 @default.
- W3134865308 countsByYear W31348653082023 @default.
- W3134865308 crossrefType "journal-article" @default.
- W3134865308 hasAuthorship W3134865308A5047819676 @default.
- W3134865308 hasAuthorship W3134865308A5067726465 @default.
- W3134865308 hasConcept C105795698 @default.
- W3134865308 hasConcept C111919701 @default.
- W3134865308 hasConcept C115575686 @default.
- W3134865308 hasConcept C119857082 @default.
- W3134865308 hasConcept C124101348 @default.
- W3134865308 hasConcept C138885662 @default.
- W3134865308 hasConcept C148483581 @default.
- W3134865308 hasConcept C152877465 @default.
- W3134865308 hasConcept C153180895 @default.
- W3134865308 hasConcept C154945302 @default.
- W3134865308 hasConcept C159877910 @default.
- W3134865308 hasConcept C2776401178 @default.
- W3134865308 hasConcept C33724603 @default.
- W3134865308 hasConcept C33923547 @default.
- W3134865308 hasConcept C41008148 @default.
- W3134865308 hasConcept C41895202 @default.
- W3134865308 hasConcept C82142266 @default.
- W3134865308 hasConcept C88516994 @default.
- W3134865308 hasConcept C98045186 @default.
- W3134865308 hasConceptScore W3134865308C105795698 @default.
- W3134865308 hasConceptScore W3134865308C111919701 @default.
- W3134865308 hasConceptScore W3134865308C115575686 @default.
- W3134865308 hasConceptScore W3134865308C119857082 @default.
- W3134865308 hasConceptScore W3134865308C124101348 @default.
- W3134865308 hasConceptScore W3134865308C138885662 @default.
- W3134865308 hasConceptScore W3134865308C148483581 @default.
- W3134865308 hasConceptScore W3134865308C152877465 @default.
- W3134865308 hasConceptScore W3134865308C153180895 @default.
- W3134865308 hasConceptScore W3134865308C154945302 @default.
- W3134865308 hasConceptScore W3134865308C159877910 @default.
- W3134865308 hasConceptScore W3134865308C2776401178 @default.
- W3134865308 hasConceptScore W3134865308C33724603 @default.
- W3134865308 hasConceptScore W3134865308C33923547 @default.
- W3134865308 hasConceptScore W3134865308C41008148 @default.
- W3134865308 hasConceptScore W3134865308C41895202 @default.
- W3134865308 hasConceptScore W3134865308C82142266 @default.
- W3134865308 hasConceptScore W3134865308C88516994 @default.
- W3134865308 hasConceptScore W3134865308C98045186 @default.
- W3134865308 hasFunder F4320321001 @default.
- W3134865308 hasLocation W31348653081 @default.
- W3134865308 hasOpenAccess W3134865308 @default.
- W3134865308 hasPrimaryLocation W31348653081 @default.
- W3134865308 hasRelatedWork W2159220931 @default.
- W3134865308 hasRelatedWork W2374344280 @default.
- W3134865308 hasRelatedWork W3134865308 @default.
- W3134865308 hasRelatedWork W3174196512 @default.
- W3134865308 hasRelatedWork W3200179079 @default.
- W3134865308 hasRelatedWork W3210877509 @default.
- W3134865308 hasRelatedWork W4212852473 @default.
- W3134865308 hasRelatedWork W4225360065 @default.
- W3134865308 hasRelatedWork W4307883119 @default.
- W3134865308 hasRelatedWork W2345184372 @default.
- W3134865308 hasVolume "100" @default.
- W3134865308 isParatext "false" @default.
- W3134865308 isRetracted "false" @default.
- W3134865308 magId "3134865308" @default.
- W3134865308 workType "article" @default.