Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134896747> ?p ?o ?g. }
- W3134896747 abstract "Artificial intelligence systems, which are designed with a capability to learn from the data presented to them, are used throughout society. These systems are used to screen loan applicants, make sentencing recommendations for criminal defendants, scan social media posts for disallowed content and more. Because these systems don't assign meaning to their complex learned correlation network, they can learn associations that don't equate to causality, resulting in non-optimal and indefensible decisions being made. In addition to making decisions that are sub-optimal, these systems may create legal liability for their designers and operators by learning correlations that violate anti-discrimination and other laws regarding what factors can be used in different types of decision making. This paper presents the use of a machine learning expert system, which is developed with meaning-assigned nodes (facts) and correlations (rules). Multiple potential implementations are considered and evaluated under different conditions, including different network error and augmentation levels and different training levels. The performance of these systems is compared to random and fully connected networks." @default.
- W3134896747 created "2021-03-15" @default.
- W3134896747 creator A5074333355 @default.
- W3134896747 date "2021-03-07" @default.
- W3134896747 modified "2023-09-23" @default.
- W3134896747 title "Expert System Gradient Descent Style Training: Development of a Defensible Artificial Intelligence Technique" @default.
- W3134896747 cites W1489622578 @default.
- W3134896747 cites W155854392 @default.
- W3134896747 cites W1968773332 @default.
- W3134896747 cites W1977318811 @default.
- W3134896747 cites W1979898991 @default.
- W3134896747 cites W1980480036 @default.
- W3134896747 cites W1989031186 @default.
- W3134896747 cites W1990334093 @default.
- W3134896747 cites W2021498796 @default.
- W3134896747 cites W2022740958 @default.
- W3134896747 cites W2022965578 @default.
- W3134896747 cites W2049012913 @default.
- W3134896747 cites W2056807896 @default.
- W3134896747 cites W2069368102 @default.
- W3134896747 cites W2095769030 @default.
- W3134896747 cites W2098139285 @default.
- W3134896747 cites W2110537886 @default.
- W3134896747 cites W2113634576 @default.
- W3134896747 cites W2129018774 @default.
- W3134896747 cites W2160411185 @default.
- W3134896747 cites W2161205534 @default.
- W3134896747 cites W2164477014 @default.
- W3134896747 cites W2334843404 @default.
- W3134896747 cites W2548509278 @default.
- W3134896747 cites W2731634768 @default.
- W3134896747 cites W2757447434 @default.
- W3134896747 cites W2785425618 @default.
- W3134896747 cites W2887489621 @default.
- W3134896747 cites W2889391310 @default.
- W3134896747 cites W2903699181 @default.
- W3134896747 cites W2912565176 @default.
- W3134896747 cites W2912889105 @default.
- W3134896747 cites W2946683488 @default.
- W3134896747 cites W2969210150 @default.
- W3134896747 cites W2989349687 @default.
- W3134896747 cites W2997468044 @default.
- W3134896747 cites W2998249317 @default.
- W3134896747 cites W2998601048 @default.
- W3134896747 cites W2999185414 @default.
- W3134896747 cites W3006064982 @default.
- W3134896747 cites W3007279825 @default.
- W3134896747 cites W3007283957 @default.
- W3134896747 cites W3008718813 @default.
- W3134896747 cites W3015228214 @default.
- W3134896747 cites W3024836211 @default.
- W3134896747 cites W3046449784 @default.
- W3134896747 cites W3082325469 @default.
- W3134896747 cites W3106955873 @default.
- W3134896747 cites W3110802041 @default.
- W3134896747 cites W3147316366 @default.
- W3134896747 cites W3199938161 @default.
- W3134896747 hasPublicationYear "2021" @default.
- W3134896747 type Work @default.
- W3134896747 sameAs 3134896747 @default.
- W3134896747 citedByCount "0" @default.
- W3134896747 crossrefType "posted-content" @default.
- W3134896747 hasAuthorship W3134896747A5074333355 @default.
- W3134896747 hasConcept C115903868 @default.
- W3134896747 hasConcept C119857082 @default.
- W3134896747 hasConcept C121332964 @default.
- W3134896747 hasConcept C153258448 @default.
- W3134896747 hasConcept C154945302 @default.
- W3134896747 hasConcept C15744967 @default.
- W3134896747 hasConcept C17744445 @default.
- W3134896747 hasConcept C199539241 @default.
- W3134896747 hasConcept C26713055 @default.
- W3134896747 hasConcept C2777834853 @default.
- W3134896747 hasConcept C2780876879 @default.
- W3134896747 hasConcept C41008148 @default.
- W3134896747 hasConcept C50644808 @default.
- W3134896747 hasConcept C542102704 @default.
- W3134896747 hasConcept C62520636 @default.
- W3134896747 hasConcept C64357122 @default.
- W3134896747 hasConceptScore W3134896747C115903868 @default.
- W3134896747 hasConceptScore W3134896747C119857082 @default.
- W3134896747 hasConceptScore W3134896747C121332964 @default.
- W3134896747 hasConceptScore W3134896747C153258448 @default.
- W3134896747 hasConceptScore W3134896747C154945302 @default.
- W3134896747 hasConceptScore W3134896747C15744967 @default.
- W3134896747 hasConceptScore W3134896747C17744445 @default.
- W3134896747 hasConceptScore W3134896747C199539241 @default.
- W3134896747 hasConceptScore W3134896747C26713055 @default.
- W3134896747 hasConceptScore W3134896747C2777834853 @default.
- W3134896747 hasConceptScore W3134896747C2780876879 @default.
- W3134896747 hasConceptScore W3134896747C41008148 @default.
- W3134896747 hasConceptScore W3134896747C50644808 @default.
- W3134896747 hasConceptScore W3134896747C542102704 @default.
- W3134896747 hasConceptScore W3134896747C62520636 @default.
- W3134896747 hasConceptScore W3134896747C64357122 @default.
- W3134896747 hasOpenAccess W3134896747 @default.
- W3134896747 hasRelatedWork W1511228222 @default.
- W3134896747 hasRelatedWork W2041439231 @default.
- W3134896747 hasRelatedWork W2150585760 @default.
- W3134896747 hasRelatedWork W249356444 @default.