Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134921635> ?p ?o ?g. }
- W3134921635 abstract "Abstract Estimates of gene flow are commonly based on inferences of landscape resistance in ecological and evolutionary research and they frequently inform decision-making processes in conservation management. It is therefore imperative that inferences of a landscape factors relevance and its resistance are robust across approaches and reflect real-world gene flow instead of methodological artefacts. Here, we tested the impact of 160 different individual-based pairwise genetic metrics on consistency of landscape genetic inferences. We used three empirical datasets that adopted individual-based sampling schemes and varied in scale (35-25,000 km 2 ) and total number of samples (184-790) and comprise the wild boar, Sus scrofa, the red fox, Vulpes vulpes and the common wall lizard, Podarcis muralis . We made use of a machine-learning algorithm implemented in R esistance GA to optimally fit resistances of landscape factors to genetic distance metrics and ranked their importance. Employed for nine landscape factors this resulted in 4,320 unique combinations of dataset, landscape factor and genetic distance metric, which provides the basis for quantifying uncertainty in inferences of landscape resistance. Our results demonstrate that there are clear differences in Akaike information criteria (AICc)-based model support and marginal R 2 -based model fit between different genetic distance metrics. Metrics based on between 1-10 axes of eigenvector-based multivariate analyses (Factorial correspondence analysis, FCA; Principal component analysis, PCA) outperformed more widely used metrics, including the proportion of shared alleles (D PS ), with AICc and marginal R 2 values often an order of magnitude greater in the former. Across datasets, inferences of the directionality of a landscape factors influence on gene flow, e.g. facilitating or impeding it, changed across different genetic distance metrics. The directionality of the inferred resistance was largely consistent when considering metrics based on between 1-10 FCA/PCA axes. Inferences of landscape genetic resistance need to be corroborated using calculations of multiple individual-based pairwise genetic distance metrics. Our results call for the adoption of eigenvector-based quantifications of pairwise genetic distances. Specifically, a preliminary step of analysis should be incorporated, which explores model ranks across genetic distance metrics derived from FCA and PCA, and, contrary to findings of a simulation study, we demonstrate that it suffices to quantify these distances spanning the first ten axes only." @default.
- W3134921635 created "2021-03-15" @default.
- W3134921635 creator A5032589032 @default.
- W3134921635 creator A5077867421 @default.
- W3134921635 date "2021-03-02" @default.
- W3134921635 modified "2023-10-12" @default.
- W3134921635 title "Using empirical datasets to quantify uncertainty in inferences of landscape genetic resistance due to variation of individual-based genetic distance metrics" @default.
- W3134921635 cites W1498506221 @default.
- W3134921635 cites W1855982476 @default.
- W3134921635 cites W1939346899 @default.
- W3134921635 cites W1967530340 @default.
- W3134921635 cites W2003942130 @default.
- W3134921635 cites W2019249381 @default.
- W3134921635 cites W2050396322 @default.
- W3134921635 cites W2052615350 @default.
- W3134921635 cites W2061669007 @default.
- W3134921635 cites W2065229575 @default.
- W3134921635 cites W2101097598 @default.
- W3134921635 cites W2107356656 @default.
- W3134921635 cites W2116888053 @default.
- W3134921635 cites W2118771231 @default.
- W3134921635 cites W2119454276 @default.
- W3134921635 cites W2134978806 @default.
- W3134921635 cites W2138111878 @default.
- W3134921635 cites W2146290595 @default.
- W3134921635 cites W2147464346 @default.
- W3134921635 cites W2154570188 @default.
- W3134921635 cites W2157714118 @default.
- W3134921635 cites W2159006290 @default.
- W3134921635 cites W2159464852 @default.
- W3134921635 cites W2166750091 @default.
- W3134921635 cites W2167189097 @default.
- W3134921635 cites W2168229848 @default.
- W3134921635 cites W2168695316 @default.
- W3134921635 cites W2184108645 @default.
- W3134921635 cites W2232895175 @default.
- W3134921635 cites W2288141042 @default.
- W3134921635 cites W2592694401 @default.
- W3134921635 cites W2608739111 @default.
- W3134921635 cites W2742748506 @default.
- W3134921635 cites W2789615955 @default.
- W3134921635 cites W2791712261 @default.
- W3134921635 cites W2883340790 @default.
- W3134921635 cites W2911680648 @default.
- W3134921635 cites W2914394955 @default.
- W3134921635 cites W2969541832 @default.
- W3134921635 cites W3000361107 @default.
- W3134921635 cites W3040018299 @default.
- W3134921635 cites W3047203175 @default.
- W3134921635 cites W3096804232 @default.
- W3134921635 cites W3108356798 @default.
- W3134921635 cites W3134512808 @default.
- W3134921635 cites W4230424180 @default.
- W3134921635 cites W4238619938 @default.
- W3134921635 cites W4295978838 @default.
- W3134921635 doi "https://doi.org/10.1101/2021.03.01.432986" @default.
- W3134921635 hasPublicationYear "2021" @default.
- W3134921635 type Work @default.
- W3134921635 sameAs 3134921635 @default.
- W3134921635 citedByCount "0" @default.
- W3134921635 crossrefType "posted-content" @default.
- W3134921635 hasAuthorship W3134921635A5032589032 @default.
- W3134921635 hasAuthorship W3134921635A5077867421 @default.
- W3134921635 hasBestOaLocation W31349216351 @default.
- W3134921635 hasConcept C105795698 @default.
- W3134921635 hasConcept C119857082 @default.
- W3134921635 hasConcept C126674687 @default.
- W3134921635 hasConcept C132525143 @default.
- W3134921635 hasConcept C149530733 @default.
- W3134921635 hasConcept C154945302 @default.
- W3134921635 hasConcept C162324750 @default.
- W3134921635 hasConcept C176217482 @default.
- W3134921635 hasConcept C184898388 @default.
- W3134921635 hasConcept C203776342 @default.
- W3134921635 hasConcept C21547014 @default.
- W3134921635 hasConcept C27438332 @default.
- W3134921635 hasConcept C2776436953 @default.
- W3134921635 hasConcept C33923547 @default.
- W3134921635 hasConcept C41008148 @default.
- W3134921635 hasConcept C612898 @default.
- W3134921635 hasConcept C80444323 @default.
- W3134921635 hasConceptScore W3134921635C105795698 @default.
- W3134921635 hasConceptScore W3134921635C119857082 @default.
- W3134921635 hasConceptScore W3134921635C126674687 @default.
- W3134921635 hasConceptScore W3134921635C132525143 @default.
- W3134921635 hasConceptScore W3134921635C149530733 @default.
- W3134921635 hasConceptScore W3134921635C154945302 @default.
- W3134921635 hasConceptScore W3134921635C162324750 @default.
- W3134921635 hasConceptScore W3134921635C176217482 @default.
- W3134921635 hasConceptScore W3134921635C184898388 @default.
- W3134921635 hasConceptScore W3134921635C203776342 @default.
- W3134921635 hasConceptScore W3134921635C21547014 @default.
- W3134921635 hasConceptScore W3134921635C27438332 @default.
- W3134921635 hasConceptScore W3134921635C2776436953 @default.
- W3134921635 hasConceptScore W3134921635C33923547 @default.
- W3134921635 hasConceptScore W3134921635C41008148 @default.
- W3134921635 hasConceptScore W3134921635C612898 @default.
- W3134921635 hasConceptScore W3134921635C80444323 @default.
- W3134921635 hasLocation W31349216351 @default.
- W3134921635 hasOpenAccess W3134921635 @default.