Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134951062> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3134951062 endingPage "47" @default.
- W3134951062 startingPage "47" @default.
- W3134951062 abstract "The blasting method is one of the best hard rock excavation methods in mining activities. This method has negative impacts, one of which is the vibrations generated by the residual energy of the explosion. This impact will affect the environment around the blasting area, both slope stability, tunnels, infrastructure, and human settlements if it is close to the blasting site. Therefore, it needs initial planning and prediction to anticipate the blasting vibration that occurs. In general, the blast vibration can be predicted using the scale distance method which uses two parameters, namely the maximum amount of explosive material per time delay and the distance of measurement from the location of the explosion. This method has been widely researched to produce several empirical equations from each explosion location studied. However, as technology develops, several studies have tried to use artificial intelligence technology, one of which is the artificial neural network algorithm as a new approach for predicting detonation vibrations. In this method, the development of the parameters used in predicting the weighting of the most influential parameters from the formation of detonation vibrations can be carried out. This study will review several studies related to the use of artificial neural networks in predicting blasting vibrations in the studies that have been carried out and also compare with prediction methods using several empirical equations." @default.
- W3134951062 created "2021-03-15" @default.
- W3134951062 creator A5009821628 @default.
- W3134951062 creator A5063136359 @default.
- W3134951062 creator A5088514581 @default.
- W3134951062 date "2021-03-01" @default.
- W3134951062 modified "2023-10-06" @default.
- W3134951062 title "Review Of The Artificial Neural Network Application In Prediciting Blast Vibration" @default.
- W3134951062 doi "https://doi.org/10.20527/jg.v7i1.9353" @default.
- W3134951062 hasPublicationYear "2021" @default.
- W3134951062 type Work @default.
- W3134951062 sameAs 3134951062 @default.
- W3134951062 citedByCount "1" @default.
- W3134951062 countsByYear W31349510622023 @default.
- W3134951062 crossrefType "journal-article" @default.
- W3134951062 hasAuthorship W3134951062A5009821628 @default.
- W3134951062 hasAuthorship W3134951062A5063136359 @default.
- W3134951062 hasAuthorship W3134951062A5088514581 @default.
- W3134951062 hasBestOaLocation W31349510621 @default.
- W3134951062 hasConcept C11413529 @default.
- W3134951062 hasConcept C121332964 @default.
- W3134951062 hasConcept C127313418 @default.
- W3134951062 hasConcept C127413603 @default.
- W3134951062 hasConcept C13280743 @default.
- W3134951062 hasConcept C154238967 @default.
- W3134951062 hasConcept C154945302 @default.
- W3134951062 hasConcept C155512373 @default.
- W3134951062 hasConcept C16674752 @default.
- W3134951062 hasConcept C178790620 @default.
- W3134951062 hasConcept C183115368 @default.
- W3134951062 hasConcept C185592680 @default.
- W3134951062 hasConcept C185798385 @default.
- W3134951062 hasConcept C198394728 @default.
- W3134951062 hasConcept C203397868 @default.
- W3134951062 hasConcept C24890656 @default.
- W3134951062 hasConcept C3899301 @default.
- W3134951062 hasConcept C41008148 @default.
- W3134951062 hasConcept C50644808 @default.
- W3134951062 hasConcept C50933969 @default.
- W3134951062 hasConcept C66938386 @default.
- W3134951062 hasConceptScore W3134951062C11413529 @default.
- W3134951062 hasConceptScore W3134951062C121332964 @default.
- W3134951062 hasConceptScore W3134951062C127313418 @default.
- W3134951062 hasConceptScore W3134951062C127413603 @default.
- W3134951062 hasConceptScore W3134951062C13280743 @default.
- W3134951062 hasConceptScore W3134951062C154238967 @default.
- W3134951062 hasConceptScore W3134951062C154945302 @default.
- W3134951062 hasConceptScore W3134951062C155512373 @default.
- W3134951062 hasConceptScore W3134951062C16674752 @default.
- W3134951062 hasConceptScore W3134951062C178790620 @default.
- W3134951062 hasConceptScore W3134951062C183115368 @default.
- W3134951062 hasConceptScore W3134951062C185592680 @default.
- W3134951062 hasConceptScore W3134951062C185798385 @default.
- W3134951062 hasConceptScore W3134951062C198394728 @default.
- W3134951062 hasConceptScore W3134951062C203397868 @default.
- W3134951062 hasConceptScore W3134951062C24890656 @default.
- W3134951062 hasConceptScore W3134951062C3899301 @default.
- W3134951062 hasConceptScore W3134951062C41008148 @default.
- W3134951062 hasConceptScore W3134951062C50644808 @default.
- W3134951062 hasConceptScore W3134951062C50933969 @default.
- W3134951062 hasConceptScore W3134951062C66938386 @default.
- W3134951062 hasIssue "1" @default.
- W3134951062 hasLocation W31349510621 @default.
- W3134951062 hasOpenAccess W3134951062 @default.
- W3134951062 hasPrimaryLocation W31349510621 @default.
- W3134951062 hasRelatedWork W2006420800 @default.
- W3134951062 hasRelatedWork W2043446476 @default.
- W3134951062 hasRelatedWork W2158896723 @default.
- W3134951062 hasRelatedWork W2354557029 @default.
- W3134951062 hasRelatedWork W2361863205 @default.
- W3134951062 hasRelatedWork W2363907548 @default.
- W3134951062 hasRelatedWork W2941985500 @default.
- W3134951062 hasRelatedWork W4206291619 @default.
- W3134951062 hasRelatedWork W4283757030 @default.
- W3134951062 hasRelatedWork W3115485319 @default.
- W3134951062 hasVolume "7" @default.
- W3134951062 isParatext "false" @default.
- W3134951062 isRetracted "false" @default.
- W3134951062 magId "3134951062" @default.
- W3134951062 workType "article" @default.