Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134966345> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3134966345 endingPage "210" @default.
- W3134966345 startingPage "183" @default.
- W3134966345 abstract "Abstract Several novel imaging and non-destructive testing technologies are based on reconstructing the spatially dependent coefficient in an elliptic partial differential equation from measurements of its solution(s). In practical applications, the unknown coefficient is often assumed to be piecewise constant on a given pixel partition (corresponding to the desired resolution), and only finitely many measurement can be made. This leads to the problem of inverting a finite-dimensional non-linear forward operator $mathcal{F}: mathcal{D}(mathcal{F})subseteq mathbb{R}^{n}to mathbb{R}^{m}$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>F</mml:mi> <mml:mo>:</mml:mo> <mml:mspace /> <mml:mi>D</mml:mi> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>)</mml:mo> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>→</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>m</mml:mi> </mml:msup> </mml:math> , where evaluating ℱ requires one or several PDE solutions. Numerical inversion methods require the implementation of this forward operator and its Jacobian. We show how to efficiently implement both using a standard FEM package and prove convergence of the FEM approximations against their true-solution counterparts. We present simple example codes for Comsol with the Matlab Livelink package, and numerically demonstrate the challenges that arise from non-uniqueness, non-linearity and instability issues. We also discuss monotonicity and convexity properties of the forward operator that arise for symmetric measurement settings. This text assumes the reader to have a basic knowledge on Finite Element Methods, including the variational formulation of elliptic PDEs, the Lax-Milgram-theorem, and the Céa-Lemma. Section 3 also assumes that the reader is familiar with the concept of Fréchet differentiability." @default.
- W3134966345 created "2021-03-15" @default.
- W3134966345 creator A5046854746 @default.
- W3134966345 date "2021-05-06" @default.
- W3134966345 modified "2023-10-16" @default.
- W3134966345 title "An Introduction to Finite Element Methods for Inverse Coefficient Problems in Elliptic PDEs" @default.
- W3134966345 cites W1967083339 @default.
- W3134966345 cites W1971508657 @default.
- W3134966345 cites W2015300527 @default.
- W3134966345 cites W2017714771 @default.
- W3134966345 cites W2046465662 @default.
- W3134966345 cites W2050559599 @default.
- W3134966345 cites W2083751551 @default.
- W3134966345 cites W2095463076 @default.
- W3134966345 cites W2129360231 @default.
- W3134966345 cites W2896048271 @default.
- W3134966345 cites W2952020389 @default.
- W3134966345 cites W2963827368 @default.
- W3134966345 cites W3101532053 @default.
- W3134966345 cites W3104405385 @default.
- W3134966345 cites W3178968719 @default.
- W3134966345 cites W4211031769 @default.
- W3134966345 doi "https://doi.org/10.1365/s13291-021-00236-2" @default.
- W3134966345 hasPublicationYear "2021" @default.
- W3134966345 type Work @default.
- W3134966345 sameAs 3134966345 @default.
- W3134966345 citedByCount "7" @default.
- W3134966345 countsByYear W31349663452021 @default.
- W3134966345 countsByYear W31349663452022 @default.
- W3134966345 countsByYear W31349663452023 @default.
- W3134966345 crossrefType "journal-article" @default.
- W3134966345 hasAuthorship W3134966345A5046854746 @default.
- W3134966345 hasBestOaLocation W31349663451 @default.
- W3134966345 hasConcept C11413529 @default.
- W3134966345 hasConcept C134306372 @default.
- W3134966345 hasConcept C164660894 @default.
- W3134966345 hasConcept C33923547 @default.
- W3134966345 hasConcept C41008148 @default.
- W3134966345 hasConceptScore W3134966345C11413529 @default.
- W3134966345 hasConceptScore W3134966345C134306372 @default.
- W3134966345 hasConceptScore W3134966345C164660894 @default.
- W3134966345 hasConceptScore W3134966345C33923547 @default.
- W3134966345 hasConceptScore W3134966345C41008148 @default.
- W3134966345 hasIssue "3" @default.
- W3134966345 hasLocation W31349663451 @default.
- W3134966345 hasLocation W31349663452 @default.
- W3134966345 hasLocation W31349663453 @default.
- W3134966345 hasLocation W31349663454 @default.
- W3134966345 hasOpenAccess W3134966345 @default.
- W3134966345 hasPrimaryLocation W31349663451 @default.
- W3134966345 hasRelatedWork W2051487156 @default.
- W3134966345 hasRelatedWork W2073681303 @default.
- W3134966345 hasRelatedWork W2317200988 @default.
- W3134966345 hasRelatedWork W2350741829 @default.
- W3134966345 hasRelatedWork W2358668433 @default.
- W3134966345 hasRelatedWork W2376932109 @default.
- W3134966345 hasRelatedWork W2382290278 @default.
- W3134966345 hasRelatedWork W2390279801 @default.
- W3134966345 hasRelatedWork W2748952813 @default.
- W3134966345 hasRelatedWork W2899084033 @default.
- W3134966345 hasVolume "123" @default.
- W3134966345 isParatext "false" @default.
- W3134966345 isRetracted "false" @default.
- W3134966345 magId "3134966345" @default.
- W3134966345 workType "article" @default.