Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135012840> ?p ?o ?g. }
- W3135012840 endingPage "1607" @default.
- W3135012840 startingPage "1596" @default.
- W3135012840 abstract "With the development of Internet technology, service providers can provide users with personalized services to enrich user experience, however, this often requires a large number of users’ private data. Meanwhile, the protection of their private data and the evaluation of the risk of leaked datasets become a matter of great concern to many people. To resolve these issues, in this paper, we develop a machine learning-based approach in online social networks (OSNs) to efficiently correlate the leaked datasets and accurately learn millions of users’ confidential information. Moreover, a trust evaluation model is developed in OSNs to identify malicious service providers and secure users’ social activities via direct trust computing and indirect trust computing. Extensive experiments are conducted by using real-world leaked datasets, and the results show that the efficiency and effectiveness of the proposed approach in terms of user privacy protection and accuracy of privacy leakage evaluation." @default.
- W3135012840 created "2021-03-15" @default.
- W3135012840 creator A5017361364 @default.
- W3135012840 creator A5022240408 @default.
- W3135012840 creator A5054551943 @default.
- W3135012840 creator A5056940015 @default.
- W3135012840 date "2021-03-09" @default.
- W3135012840 modified "2023-10-17" @default.
- W3135012840 title "A machine learning based approach for user privacy preservation in social networks" @default.
- W3135012840 cites W1487941708 @default.
- W3135012840 cites W1887514974 @default.
- W3135012840 cites W1977678170 @default.
- W3135012840 cites W1992270714 @default.
- W3135012840 cites W2001845088 @default.
- W3135012840 cites W2007488200 @default.
- W3135012840 cites W2019578814 @default.
- W3135012840 cites W2030112111 @default.
- W3135012840 cites W2041709326 @default.
- W3135012840 cites W2048755632 @default.
- W3135012840 cites W2050296478 @default.
- W3135012840 cites W2054097025 @default.
- W3135012840 cites W2059506587 @default.
- W3135012840 cites W2059607712 @default.
- W3135012840 cites W2073342447 @default.
- W3135012840 cites W2086553822 @default.
- W3135012840 cites W2093219534 @default.
- W3135012840 cites W2097267243 @default.
- W3135012840 cites W2103133870 @default.
- W3135012840 cites W2111397260 @default.
- W3135012840 cites W2118994807 @default.
- W3135012840 cites W2119545418 @default.
- W3135012840 cites W2126539515 @default.
- W3135012840 cites W2135359429 @default.
- W3135012840 cites W2143570397 @default.
- W3135012840 cites W2162118634 @default.
- W3135012840 cites W2190581264 @default.
- W3135012840 cites W2258871870 @default.
- W3135012840 cites W2395178674 @default.
- W3135012840 cites W2411725940 @default.
- W3135012840 cites W2490171383 @default.
- W3135012840 cites W2524453101 @default.
- W3135012840 cites W2524553946 @default.
- W3135012840 cites W2538793708 @default.
- W3135012840 cites W2604175478 @default.
- W3135012840 cites W2734150319 @default.
- W3135012840 cites W2765667105 @default.
- W3135012840 cites W2800952572 @default.
- W3135012840 cites W2891930034 @default.
- W3135012840 cites W2931548779 @default.
- W3135012840 cites W2949135363 @default.
- W3135012840 cites W2949721196 @default.
- W3135012840 cites W2981508946 @default.
- W3135012840 cites W2998874759 @default.
- W3135012840 cites W2998881388 @default.
- W3135012840 cites W3011995057 @default.
- W3135012840 cites W3048295601 @default.
- W3135012840 cites W3106367563 @default.
- W3135012840 cites W4247857566 @default.
- W3135012840 doi "https://doi.org/10.1007/s12083-020-01068-0" @default.
- W3135012840 hasPublicationYear "2021" @default.
- W3135012840 type Work @default.
- W3135012840 sameAs 3135012840 @default.
- W3135012840 citedByCount "1" @default.
- W3135012840 countsByYear W31350128402023 @default.
- W3135012840 crossrefType "journal-article" @default.
- W3135012840 hasAuthorship W3135012840A5017361364 @default.
- W3135012840 hasAuthorship W3135012840A5022240408 @default.
- W3135012840 hasAuthorship W3135012840A5054551943 @default.
- W3135012840 hasAuthorship W3135012840A5056940015 @default.
- W3135012840 hasBestOaLocation W31350128401 @default.
- W3135012840 hasConcept C108827166 @default.
- W3135012840 hasConcept C110875604 @default.
- W3135012840 hasConcept C116537 @default.
- W3135012840 hasConcept C119599485 @default.
- W3135012840 hasConcept C123201435 @default.
- W3135012840 hasConcept C127413603 @default.
- W3135012840 hasConcept C136764020 @default.
- W3135012840 hasConcept C144133560 @default.
- W3135012840 hasConcept C162853370 @default.
- W3135012840 hasConcept C180198813 @default.
- W3135012840 hasConcept C2777622855 @default.
- W3135012840 hasConcept C2780378061 @default.
- W3135012840 hasConcept C3017597292 @default.
- W3135012840 hasConcept C38652104 @default.
- W3135012840 hasConcept C41008148 @default.
- W3135012840 hasConcept C4727928 @default.
- W3135012840 hasConcept C518677369 @default.
- W3135012840 hasConcept C71745522 @default.
- W3135012840 hasConcept C99221444 @default.
- W3135012840 hasConceptScore W3135012840C108827166 @default.
- W3135012840 hasConceptScore W3135012840C110875604 @default.
- W3135012840 hasConceptScore W3135012840C116537 @default.
- W3135012840 hasConceptScore W3135012840C119599485 @default.
- W3135012840 hasConceptScore W3135012840C123201435 @default.
- W3135012840 hasConceptScore W3135012840C127413603 @default.
- W3135012840 hasConceptScore W3135012840C136764020 @default.
- W3135012840 hasConceptScore W3135012840C144133560 @default.
- W3135012840 hasConceptScore W3135012840C162853370 @default.