Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135039877> ?p ?o ?g. }
- W3135039877 endingPage "110714" @default.
- W3135039877 startingPage "110714" @default.
- W3135039877 abstract "Building energy consumption prediction plays a key role in energy-efficiency decision making. With the advancement in data analytics, a number of machine learning-based building energy consumption prediction models have been developed in recent years. However, existing prediction models do not sufficiently take occupant behavior into account. Towards addressing this gap, this paper presents a machine-learning approach for predicting building energy consumption in an occupant-behavior-sensitive manner. In this approach, a model learns from a large set of energy-use cases that were modelled and simulated in EnergyPlus. The machine-learning prediction model was trained using a large dataset that includes 3-month hourly data for 5760 energy-use cases representing different combinations of building characteristics, outdoor weather conditions, and occupant behaviors. In developing the model, four machine-learning algorithms were tested and compared in terms of their prediction accuracy and computational efficiency: classification and regression trees (CART), ensemble bagging trees (EBT), artificial neural networks (ANN), and deep neural networks (DNN). The simulation results demonstrated the high impact of the variables considered in this study. For example, the highest energy-consuming case consumed over 3432 times more energy than the lowest-consuming case. Occupant behavior made a difference up to over 7 times in energy consumption. The DNN model with four hidden layers achieved 2.97% coefficient of variation (CV). Such high performance shows the potential of the proposed approach. The approach could help better understand the impact of occupant behavior on building energy consumption and identify opportunities for behavioral energy-saving measures." @default.
- W3135039877 created "2021-03-15" @default.
- W3135039877 creator A5002699332 @default.
- W3135039877 creator A5041397764 @default.
- W3135039877 date "2021-05-01" @default.
- W3135039877 modified "2023-10-11" @default.
- W3135039877 title "Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings" @default.
- W3135039877 cites W1881999183 @default.
- W3135039877 cites W1967379861 @default.
- W3135039877 cites W1969885422 @default.
- W3135039877 cites W1983266300 @default.
- W3135039877 cites W1988434901 @default.
- W3135039877 cites W1990729297 @default.
- W3135039877 cites W2000548672 @default.
- W3135039877 cites W2002974220 @default.
- W3135039877 cites W2003989464 @default.
- W3135039877 cites W2007017967 @default.
- W3135039877 cites W2017723190 @default.
- W3135039877 cites W2023312901 @default.
- W3135039877 cites W2024075368 @default.
- W3135039877 cites W2051502925 @default.
- W3135039877 cites W2053972726 @default.
- W3135039877 cites W2064469609 @default.
- W3135039877 cites W2068232986 @default.
- W3135039877 cites W2170242066 @default.
- W3135039877 cites W2199439491 @default.
- W3135039877 cites W2201221078 @default.
- W3135039877 cites W2294620277 @default.
- W3135039877 cites W2511775542 @default.
- W3135039877 cites W2548560601 @default.
- W3135039877 cites W2560808172 @default.
- W3135039877 cites W2595984151 @default.
- W3135039877 cites W2596109970 @default.
- W3135039877 cites W2606989972 @default.
- W3135039877 cites W2608187711 @default.
- W3135039877 cites W2612242444 @default.
- W3135039877 cites W2739729355 @default.
- W3135039877 cites W2754029504 @default.
- W3135039877 cites W2761146210 @default.
- W3135039877 cites W2767695914 @default.
- W3135039877 cites W977807926 @default.
- W3135039877 doi "https://doi.org/10.1016/j.rser.2021.110714" @default.
- W3135039877 hasPublicationYear "2021" @default.
- W3135039877 type Work @default.
- W3135039877 sameAs 3135039877 @default.
- W3135039877 citedByCount "72" @default.
- W3135039877 countsByYear W31350398772021 @default.
- W3135039877 countsByYear W31350398772022 @default.
- W3135039877 countsByYear W31350398772023 @default.
- W3135039877 crossrefType "journal-article" @default.
- W3135039877 hasAuthorship W3135039877A5002699332 @default.
- W3135039877 hasAuthorship W3135039877A5041397764 @default.
- W3135039877 hasConcept C105795698 @default.
- W3135039877 hasConcept C119599485 @default.
- W3135039877 hasConcept C119857082 @default.
- W3135039877 hasConcept C127413603 @default.
- W3135039877 hasConcept C152877465 @default.
- W3135039877 hasConcept C154945302 @default.
- W3135039877 hasConcept C177264268 @default.
- W3135039877 hasConcept C186370098 @default.
- W3135039877 hasConcept C199360897 @default.
- W3135039877 hasConcept C2742236 @default.
- W3135039877 hasConcept C2780165032 @default.
- W3135039877 hasConcept C33923547 @default.
- W3135039877 hasConcept C41008148 @default.
- W3135039877 hasConcept C44154836 @default.
- W3135039877 hasConcept C45804977 @default.
- W3135039877 hasConcept C50644808 @default.
- W3135039877 hasConcept C58489278 @default.
- W3135039877 hasConcept C84525736 @default.
- W3135039877 hasConceptScore W3135039877C105795698 @default.
- W3135039877 hasConceptScore W3135039877C119599485 @default.
- W3135039877 hasConceptScore W3135039877C119857082 @default.
- W3135039877 hasConceptScore W3135039877C127413603 @default.
- W3135039877 hasConceptScore W3135039877C152877465 @default.
- W3135039877 hasConceptScore W3135039877C154945302 @default.
- W3135039877 hasConceptScore W3135039877C177264268 @default.
- W3135039877 hasConceptScore W3135039877C186370098 @default.
- W3135039877 hasConceptScore W3135039877C199360897 @default.
- W3135039877 hasConceptScore W3135039877C2742236 @default.
- W3135039877 hasConceptScore W3135039877C2780165032 @default.
- W3135039877 hasConceptScore W3135039877C33923547 @default.
- W3135039877 hasConceptScore W3135039877C41008148 @default.
- W3135039877 hasConceptScore W3135039877C44154836 @default.
- W3135039877 hasConceptScore W3135039877C45804977 @default.
- W3135039877 hasConceptScore W3135039877C50644808 @default.
- W3135039877 hasConceptScore W3135039877C58489278 @default.
- W3135039877 hasConceptScore W3135039877C84525736 @default.
- W3135039877 hasFunder F4320309815 @default.
- W3135039877 hasFunder F4320332753 @default.
- W3135039877 hasLocation W31350398771 @default.
- W3135039877 hasOpenAccess W3135039877 @default.
- W3135039877 hasPrimaryLocation W31350398771 @default.
- W3135039877 hasRelatedWork W3131051759 @default.
- W3135039877 hasRelatedWork W3158249181 @default.
- W3135039877 hasRelatedWork W3204641204 @default.
- W3135039877 hasRelatedWork W4280583453 @default.
- W3135039877 hasRelatedWork W4283317342 @default.