Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135063768> ?p ?o ?g. }
- W3135063768 endingPage "38730" @default.
- W3135063768 startingPage "38718" @default.
- W3135063768 abstract "Sound source localization and separation are essential functions for robot audition to comprehend acoustic environments. The widely-used multiple signal classification (MUSIC) can precisely estimate the directions of arrival (DoAs) of multiple sound sources if its hyperparameters are selected appropriately depending on the surrounding environment. A popular separation method based on a complex Gaussian mixture model (CGMM), on the other hand, can extract multiple sources even in noisy environments if its latent variables are properly initialized to avoid bad local optima. To overcome the drawbacks of both the MUSIC and CGMM, we propose a robot audition framework that complementarily combines the MUSIC and CGMM in a probabilistic manner. Our method is based on a variant of the CGMM conditioned by the localization results of MUSIC. The hyperparameters of MUSIC are estimated by the type II maximum likelihood estimation of the CGMM, and the CGMM itself is efficiently initialized and regularized by using the localization results of MUSIC. Experimental results show that our method outperformed conventional localization and separation methods even when the number of sound sources is unknown. we also demonstrate that our method can work even with moving sound sources in real time." @default.
- W3135063768 created "2021-03-15" @default.
- W3135063768 creator A5006862474 @default.
- W3135063768 creator A5007353694 @default.
- W3135063768 creator A5031341888 @default.
- W3135063768 creator A5042385500 @default.
- W3135063768 date "2021-01-01" @default.
- W3135063768 modified "2023-09-24" @default.
- W3135063768 title "Robust Auditory Functions Based on Probabilistic Integration of MUSIC and CGMM" @default.
- W3135063768 cites W1552314771 @default.
- W3135063768 cites W1560213421 @default.
- W3135063768 cites W1603544686 @default.
- W3135063768 cites W1663973292 @default.
- W3135063768 cites W182689536 @default.
- W3135063768 cites W2043264942 @default.
- W3135063768 cites W2051881736 @default.
- W3135063768 cites W2054221677 @default.
- W3135063768 cites W2063521662 @default.
- W3135063768 cites W2069432516 @default.
- W3135063768 cites W2072548008 @default.
- W3135063768 cites W2074134755 @default.
- W3135063768 cites W2075916569 @default.
- W3135063768 cites W2096230913 @default.
- W3135063768 cites W2096301647 @default.
- W3135063768 cites W2098723113 @default.
- W3135063768 cites W2098795429 @default.
- W3135063768 cites W2101856597 @default.
- W3135063768 cites W2109355036 @default.
- W3135063768 cites W2111879728 @default.
- W3135063768 cites W2113638573 @default.
- W3135063768 cites W2113990625 @default.
- W3135063768 cites W2117678320 @default.
- W3135063768 cites W2137867936 @default.
- W3135063768 cites W2139625825 @default.
- W3135063768 cites W2147673046 @default.
- W3135063768 cites W2152321507 @default.
- W3135063768 cites W2158266063 @default.
- W3135063768 cites W2168729028 @default.
- W3135063768 cites W2221409856 @default.
- W3135063768 cites W2288645994 @default.
- W3135063768 cites W2400339399 @default.
- W3135063768 cites W2412956798 @default.
- W3135063768 cites W2563666542 @default.
- W3135063768 cites W2565542385 @default.
- W3135063768 cites W2571623814 @default.
- W3135063768 cites W2586584460 @default.
- W3135063768 cites W2592600618 @default.
- W3135063768 cites W2734774145 @default.
- W3135063768 cites W2783795417 @default.
- W3135063768 cites W2787211894 @default.
- W3135063768 cites W2892232131 @default.
- W3135063768 cites W2900160352 @default.
- W3135063768 cites W2900212944 @default.
- W3135063768 cites W2903420265 @default.
- W3135063768 cites W2909243009 @default.
- W3135063768 cites W2933708090 @default.
- W3135063768 cites W2946521785 @default.
- W3135063768 cites W2952218014 @default.
- W3135063768 cites W2962970794 @default.
- W3135063768 cites W2963058659 @default.
- W3135063768 cites W2997688633 @default.
- W3135063768 cites W2998774371 @default.
- W3135063768 cites W3003779847 @default.
- W3135063768 cites W3016244615 @default.
- W3135063768 cites W3096070144 @default.
- W3135063768 cites W3102937397 @default.
- W3135063768 cites W3130316726 @default.
- W3135063768 cites W3149173221 @default.
- W3135063768 doi "https://doi.org/10.1109/access.2021.3064305" @default.
- W3135063768 hasPublicationYear "2021" @default.
- W3135063768 type Work @default.
- W3135063768 sameAs 3135063768 @default.
- W3135063768 citedByCount "1" @default.
- W3135063768 countsByYear W31350637682023 @default.
- W3135063768 crossrefType "journal-article" @default.
- W3135063768 hasAuthorship W3135063768A5006862474 @default.
- W3135063768 hasAuthorship W3135063768A5007353694 @default.
- W3135063768 hasAuthorship W3135063768A5031341888 @default.
- W3135063768 hasAuthorship W3135063768A5042385500 @default.
- W3135063768 hasBestOaLocation W31350637681 @default.
- W3135063768 hasConcept C121332964 @default.
- W3135063768 hasConcept C153180895 @default.
- W3135063768 hasConcept C154945302 @default.
- W3135063768 hasConcept C163716315 @default.
- W3135063768 hasConcept C172051844 @default.
- W3135063768 hasConcept C199360897 @default.
- W3135063768 hasConcept C206118826 @default.
- W3135063768 hasConcept C21822782 @default.
- W3135063768 hasConcept C2776864781 @default.
- W3135063768 hasConcept C2779843651 @default.
- W3135063768 hasConcept C28490314 @default.
- W3135063768 hasConcept C41008148 @default.
- W3135063768 hasConcept C49937458 @default.
- W3135063768 hasConcept C61224824 @default.
- W3135063768 hasConcept C62520636 @default.
- W3135063768 hasConcept C76155785 @default.
- W3135063768 hasConcept C8642999 @default.
- W3135063768 hasConcept C90509273 @default.