Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135065403> ?p ?o ?g. }
- W3135065403 endingPage "2114" @default.
- W3135065403 startingPage "2098" @default.
- W3135065403 abstract "Evaluating the response statistics of nonlinear structures constitutes a key issue in engineering design. Hereby, the Monte Carlo method has proven useful, although the computational cost turns out to be considerably high. In particular, around the design point of the system near structural failure, a reliable estimation of the statistics is unfeasible for complex high-dimensional systems. Thus, in this paper, we develop a machine-learning-enhanced Monte Carlo simulation strategy for nonlinear behaving engineering structures. A neural network learns the response behavior of the structure subjected to an initial nonstationary ground excitation subset, which is generated based on the spectral properties of a chosen ground acceleration record. Then using the superior computational efficiency of the neural network, it is possible to predict the response statistics of the full sample set, which is considerably larger than the initial training sample set. To ensure a reliable neural network response prediction in case of rare events near structural failure, we propose to extend the initial training sample set increasing the variance of the intensity. We show that using this extended initial sample set enables a reliable prediction of the response statistics, even in the tail end of the distribution. HIGHLIGHTS A new Monte Carlo method is developed that provides the response statistics of a nonlinear system in the tail end of the distribution. A nonstationary filter is applied to a Gaussian white noise to generate realistic artificial earthquake records. An extended training strategy using neural networks is proposed to improve the reliability of the method in the tail end of the distribution. The new strategy reveals a significant speedup as well as a prediction of the response statistics in the tail end with high confidence." @default.
- W3135065403 created "2021-03-15" @default.
- W3135065403 creator A5028779084 @default.
- W3135065403 creator A5046930878 @default.
- W3135065403 creator A5066364445 @default.
- W3135065403 creator A5032802839 @default.
- W3135065403 date "2021-02-26" @default.
- W3135065403 modified "2023-10-05" @default.
- W3135065403 title "Machine‐learning‐enhanced tail end prediction of structural response statistics in earthquake engineering" @default.
- W3135065403 cites W1498436455 @default.
- W3135065403 cites W1505021101 @default.
- W3135065403 cites W1963649399 @default.
- W3135065403 cites W1964385999 @default.
- W3135065403 cites W1977902821 @default.
- W3135065403 cites W1988115241 @default.
- W3135065403 cites W2028697190 @default.
- W3135065403 cites W2038553168 @default.
- W3135065403 cites W2039022455 @default.
- W3135065403 cites W2040404518 @default.
- W3135065403 cites W2044828498 @default.
- W3135065403 cites W2044894268 @default.
- W3135065403 cites W2046207241 @default.
- W3135065403 cites W2052636318 @default.
- W3135065403 cites W2053535384 @default.
- W3135065403 cites W2062516874 @default.
- W3135065403 cites W2074137256 @default.
- W3135065403 cites W2093297707 @default.
- W3135065403 cites W2094685728 @default.
- W3135065403 cites W2107192240 @default.
- W3135065403 cites W2115021113 @default.
- W3135065403 cites W2126690099 @default.
- W3135065403 cites W2130250210 @default.
- W3135065403 cites W2145195377 @default.
- W3135065403 cites W2145454644 @default.
- W3135065403 cites W2153477645 @default.
- W3135065403 cites W2167387062 @default.
- W3135065403 cites W2282280972 @default.
- W3135065403 cites W2513543563 @default.
- W3135065403 cites W2555005726 @default.
- W3135065403 cites W2569557400 @default.
- W3135065403 cites W2602259354 @default.
- W3135065403 cites W2605300842 @default.
- W3135065403 cites W2608772344 @default.
- W3135065403 cites W2720193536 @default.
- W3135065403 cites W2767423028 @default.
- W3135065403 cites W2775484290 @default.
- W3135065403 cites W2873839375 @default.
- W3135065403 cites W2905955008 @default.
- W3135065403 cites W2908963506 @default.
- W3135065403 cites W2930890426 @default.
- W3135065403 cites W2955537869 @default.
- W3135065403 cites W2957073562 @default.
- W3135065403 cites W2974551902 @default.
- W3135065403 cites W3006475788 @default.
- W3135065403 cites W3011163836 @default.
- W3135065403 cites W3025446192 @default.
- W3135065403 cites W3026667335 @default.
- W3135065403 cites W3041560935 @default.
- W3135065403 cites W3089246515 @default.
- W3135065403 cites W4233333560 @default.
- W3135065403 cites W4243340484 @default.
- W3135065403 cites W569092718 @default.
- W3135065403 doi "https://doi.org/10.1002/eqe.3432" @default.
- W3135065403 hasPublicationYear "2021" @default.
- W3135065403 type Work @default.
- W3135065403 sameAs 3135065403 @default.
- W3135065403 citedByCount "24" @default.
- W3135065403 countsByYear W31350654032021 @default.
- W3135065403 countsByYear W31350654032022 @default.
- W3135065403 countsByYear W31350654032023 @default.
- W3135065403 crossrefType "journal-article" @default.
- W3135065403 hasAuthorship W3135065403A5028779084 @default.
- W3135065403 hasAuthorship W3135065403A5032802839 @default.
- W3135065403 hasAuthorship W3135065403A5046930878 @default.
- W3135065403 hasAuthorship W3135065403A5066364445 @default.
- W3135065403 hasConcept C105795698 @default.
- W3135065403 hasConcept C11413529 @default.
- W3135065403 hasConcept C115961682 @default.
- W3135065403 hasConcept C119857082 @default.
- W3135065403 hasConcept C121332964 @default.
- W3135065403 hasConcept C154945302 @default.
- W3135065403 hasConcept C158622935 @default.
- W3135065403 hasConcept C185592680 @default.
- W3135065403 hasConcept C19499675 @default.
- W3135065403 hasConcept C198531522 @default.
- W3135065403 hasConcept C33923547 @default.
- W3135065403 hasConcept C41008148 @default.
- W3135065403 hasConcept C43617362 @default.
- W3135065403 hasConcept C50644808 @default.
- W3135065403 hasConcept C62520636 @default.
- W3135065403 hasConcept C99498987 @default.
- W3135065403 hasConceptScore W3135065403C105795698 @default.
- W3135065403 hasConceptScore W3135065403C11413529 @default.
- W3135065403 hasConceptScore W3135065403C115961682 @default.
- W3135065403 hasConceptScore W3135065403C119857082 @default.
- W3135065403 hasConceptScore W3135065403C121332964 @default.
- W3135065403 hasConceptScore W3135065403C154945302 @default.
- W3135065403 hasConceptScore W3135065403C158622935 @default.