Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135137978> ?p ?o ?g. }
- W3135137978 endingPage "401" @default.
- W3135137978 startingPage "375" @default.
- W3135137978 abstract "Ignition prediction of polymer-bonded explosives is difficult due to complex multiphysics coupling processes with heterogeneous microstructure, such as microcrack, microvoid, crystal size, and the interface property. Traditional simulation completely depends on the materials model and it is quite time-consuming. In this paper, considering heterogeneous microcracks, the data-driven ignition prediction method is proposed. A hybrid machine learning algorithm integrated with principal component analysis (PCA), binary gravitational search algorithm (BGSA) and backpropagation neural networks (BPNN) is developed. Based on the ignition database produced by finite element simulation, combining the developed prediction method, the results show better accuracy and efficiency on ignition prediction, compared with another four traditional machine learning algorithms." @default.
- W3135137978 created "2021-03-15" @default.
- W3135137978 creator A5007953113 @default.
- W3135137978 creator A5011201862 @default.
- W3135137978 creator A5011690976 @default.
- W3135137978 creator A5054569376 @default.
- W3135137978 date "2021-03-01" @default.
- W3135137978 modified "2023-10-02" @default.
- W3135137978 title "Data-driven predicting the ignition of polymer-bonded explosives with heterogeneous microcracks" @default.
- W3135137978 cites W1574447377 @default.
- W3135137978 cites W1637502016 @default.
- W3135137978 cites W1647295751 @default.
- W3135137978 cites W1653877519 @default.
- W3135137978 cites W1672053088 @default.
- W3135137978 cites W194899566 @default.
- W3135137978 cites W1966570124 @default.
- W3135137978 cites W1966633957 @default.
- W3135137978 cites W2002021572 @default.
- W3135137978 cites W2036153959 @default.
- W3135137978 cites W2045796535 @default.
- W3135137978 cites W2055631528 @default.
- W3135137978 cites W2081783886 @default.
- W3135137978 cites W2113150722 @default.
- W3135137978 cites W2131052040 @default.
- W3135137978 cites W2137335991 @default.
- W3135137978 cites W2144716645 @default.
- W3135137978 cites W2180748755 @default.
- W3135137978 cites W2277561952 @default.
- W3135137978 cites W2295124130 @default.
- W3135137978 cites W2521697318 @default.
- W3135137978 cites W2576162683 @default.
- W3135137978 cites W2602667531 @default.
- W3135137978 cites W2613704847 @default.
- W3135137978 cites W2784091399 @default.
- W3135137978 cites W2794214664 @default.
- W3135137978 cites W2799368688 @default.
- W3135137978 cites W2803508366 @default.
- W3135137978 cites W2885611161 @default.
- W3135137978 cites W2922527663 @default.
- W3135137978 cites W2968923792 @default.
- W3135137978 cites W2982956509 @default.
- W3135137978 cites W2992886679 @default.
- W3135137978 cites W2994752459 @default.
- W3135137978 cites W2996868133 @default.
- W3135137978 cites W2997096135 @default.
- W3135137978 cites W2999772350 @default.
- W3135137978 cites W3004907498 @default.
- W3135137978 cites W3014916707 @default.
- W3135137978 cites W3158433744 @default.
- W3135137978 doi "https://doi.org/10.1080/07370652.2021.1890858" @default.
- W3135137978 hasPublicationYear "2021" @default.
- W3135137978 type Work @default.
- W3135137978 sameAs 3135137978 @default.
- W3135137978 citedByCount "3" @default.
- W3135137978 countsByYear W31351379782022 @default.
- W3135137978 countsByYear W31351379782023 @default.
- W3135137978 crossrefType "journal-article" @default.
- W3135137978 hasAuthorship W3135137978A5007953113 @default.
- W3135137978 hasAuthorship W3135137978A5011201862 @default.
- W3135137978 hasAuthorship W3135137978A5011690976 @default.
- W3135137978 hasAuthorship W3135137978A5054569376 @default.
- W3135137978 hasConcept C121332964 @default.
- W3135137978 hasConcept C127413603 @default.
- W3135137978 hasConcept C131584629 @default.
- W3135137978 hasConcept C135628077 @default.
- W3135137978 hasConcept C146978453 @default.
- W3135137978 hasConcept C154238967 @default.
- W3135137978 hasConcept C154945302 @default.
- W3135137978 hasConcept C155032097 @default.
- W3135137978 hasConcept C159063594 @default.
- W3135137978 hasConcept C159985019 @default.
- W3135137978 hasConcept C168167062 @default.
- W3135137978 hasConcept C178790620 @default.
- W3135137978 hasConcept C185592680 @default.
- W3135137978 hasConcept C192562407 @default.
- W3135137978 hasConcept C27438332 @default.
- W3135137978 hasConcept C41008148 @default.
- W3135137978 hasConcept C46435376 @default.
- W3135137978 hasConcept C50644808 @default.
- W3135137978 hasConcept C66938386 @default.
- W3135137978 hasConcept C97355855 @default.
- W3135137978 hasConceptScore W3135137978C121332964 @default.
- W3135137978 hasConceptScore W3135137978C127413603 @default.
- W3135137978 hasConceptScore W3135137978C131584629 @default.
- W3135137978 hasConceptScore W3135137978C135628077 @default.
- W3135137978 hasConceptScore W3135137978C146978453 @default.
- W3135137978 hasConceptScore W3135137978C154238967 @default.
- W3135137978 hasConceptScore W3135137978C154945302 @default.
- W3135137978 hasConceptScore W3135137978C155032097 @default.
- W3135137978 hasConceptScore W3135137978C159063594 @default.
- W3135137978 hasConceptScore W3135137978C159985019 @default.
- W3135137978 hasConceptScore W3135137978C168167062 @default.
- W3135137978 hasConceptScore W3135137978C178790620 @default.
- W3135137978 hasConceptScore W3135137978C185592680 @default.
- W3135137978 hasConceptScore W3135137978C192562407 @default.
- W3135137978 hasConceptScore W3135137978C27438332 @default.
- W3135137978 hasConceptScore W3135137978C41008148 @default.
- W3135137978 hasConceptScore W3135137978C46435376 @default.