Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135178051> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3135178051 abstract "Abstract Stochastic partial differential equation (PDE) eigenvalue problems (EVPs) often arise in the field of uncertainty quantification, whereby one seeks to quantify the uncertainty in an eigenvalue, or its eigenfunction. In this paper, we present an efficient multilevel quasi-Monte Carlo (MLQMC) algorithm for computing the expectation of the smallest eigenvalue of an elliptic EVP with stochastic coefficients. Each sample evaluation requires the solution of a PDE EVP, and so tackling this problem in practice is notoriously computationally difficult. We speed up the approximation of this expectation in four ways: we use a multilevel variance reduction scheme to spread the work over a hierarchy of FE meshes and truncation dimensions; we use QMC methods to efficiently compute the expectations on each level; we exploit the smoothness in parameter space and reuse the eigenvector from a nearby QMC point to reduce the number of iterations of the eigensolver; and we utilize a two-grid discretization scheme to obtain the eigenvalue on the fine mesh with a single linear solve. The full error analysis of a basic MLQMC algorithm is given in the companion paper (Gilbert, A. D. & Scheichl, R. (2023) Multilevel quasi-Monte Carlo methods for random elliptic eigenvalue problems I: regularity and analysis. IMA J. Numer. Anal.), and so, in this paper, we focus on how to further improve the efficiency and provide theoretical justification for using nearby QMC points and two-grid methods. Numerical results are presented that show the efficiency of our algorithm, and also show that the four strategies we employ are complementary." @default.
- W3135178051 created "2021-03-15" @default.
- W3135178051 creator A5026757383 @default.
- W3135178051 creator A5050544926 @default.
- W3135178051 date "2023-05-18" @default.
- W3135178051 modified "2023-09-26" @default.
- W3135178051 title "Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems II: efficient algorithms and numerical results" @default.
- W3135178051 cites W1489874149 @default.
- W3135178051 cites W1542736314 @default.
- W3135178051 cites W1588588806 @default.
- W3135178051 cites W1765511840 @default.
- W3135178051 cites W1972350501 @default.
- W3135178051 cites W1978501336 @default.
- W3135178051 cites W1981743146 @default.
- W3135178051 cites W1982274529 @default.
- W3135178051 cites W1986038455 @default.
- W3135178051 cites W1997711371 @default.
- W3135178051 cites W2013310111 @default.
- W3135178051 cites W2035455944 @default.
- W3135178051 cites W2036766781 @default.
- W3135178051 cites W2041568728 @default.
- W3135178051 cites W2042083287 @default.
- W3135178051 cites W2072267808 @default.
- W3135178051 cites W2102762041 @default.
- W3135178051 cites W2126980197 @default.
- W3135178051 cites W2135459060 @default.
- W3135178051 cites W2144763426 @default.
- W3135178051 cites W2163715525 @default.
- W3135178051 cites W2164686000 @default.
- W3135178051 cites W2166634029 @default.
- W3135178051 cites W2480854438 @default.
- W3135178051 cites W2685500084 @default.
- W3135178051 cites W2946241712 @default.
- W3135178051 cites W2962921715 @default.
- W3135178051 cites W2964218952 @default.
- W3135178051 cites W2969984443 @default.
- W3135178051 cites W2982411317 @default.
- W3135178051 cites W2985152630 @default.
- W3135178051 cites W3010377115 @default.
- W3135178051 cites W3102723444 @default.
- W3135178051 cites W4211134967 @default.
- W3135178051 cites W4242473853 @default.
- W3135178051 cites W598051755 @default.
- W3135178051 doi "https://doi.org/10.1093/imanum/drad009" @default.
- W3135178051 hasPublicationYear "2023" @default.
- W3135178051 type Work @default.
- W3135178051 sameAs 3135178051 @default.
- W3135178051 citedByCount "0" @default.
- W3135178051 crossrefType "journal-article" @default.
- W3135178051 hasAuthorship W3135178051A5026757383 @default.
- W3135178051 hasAuthorship W3135178051A5050544926 @default.
- W3135178051 hasBestOaLocation W31351780512 @default.
- W3135178051 hasConcept C105795698 @default.
- W3135178051 hasConcept C111350023 @default.
- W3135178051 hasConcept C11413529 @default.
- W3135178051 hasConcept C121332964 @default.
- W3135178051 hasConcept C126255220 @default.
- W3135178051 hasConcept C128803854 @default.
- W3135178051 hasConcept C13153151 @default.
- W3135178051 hasConcept C134306372 @default.
- W3135178051 hasConcept C158693339 @default.
- W3135178051 hasConcept C19499675 @default.
- W3135178051 hasConcept C28826006 @default.
- W3135178051 hasConcept C33923547 @default.
- W3135178051 hasConcept C62520636 @default.
- W3135178051 hasConcept C63320529 @default.
- W3135178051 hasConcept C73000952 @default.
- W3135178051 hasConceptScore W3135178051C105795698 @default.
- W3135178051 hasConceptScore W3135178051C111350023 @default.
- W3135178051 hasConceptScore W3135178051C11413529 @default.
- W3135178051 hasConceptScore W3135178051C121332964 @default.
- W3135178051 hasConceptScore W3135178051C126255220 @default.
- W3135178051 hasConceptScore W3135178051C128803854 @default.
- W3135178051 hasConceptScore W3135178051C13153151 @default.
- W3135178051 hasConceptScore W3135178051C134306372 @default.
- W3135178051 hasConceptScore W3135178051C158693339 @default.
- W3135178051 hasConceptScore W3135178051C19499675 @default.
- W3135178051 hasConceptScore W3135178051C28826006 @default.
- W3135178051 hasConceptScore W3135178051C33923547 @default.
- W3135178051 hasConceptScore W3135178051C62520636 @default.
- W3135178051 hasConceptScore W3135178051C63320529 @default.
- W3135178051 hasConceptScore W3135178051C73000952 @default.
- W3135178051 hasLocation W31351780511 @default.
- W3135178051 hasLocation W31351780512 @default.
- W3135178051 hasOpenAccess W3135178051 @default.
- W3135178051 hasPrimaryLocation W31351780511 @default.
- W3135178051 hasRelatedWork W2053448926 @default.
- W3135178051 hasRelatedWork W2058033852 @default.
- W3135178051 hasRelatedWork W2081468442 @default.
- W3135178051 hasRelatedWork W2130101134 @default.
- W3135178051 hasRelatedWork W2145793227 @default.
- W3135178051 hasRelatedWork W2376012189 @default.
- W3135178051 hasRelatedWork W2748495411 @default.
- W3135178051 hasRelatedWork W2791967325 @default.
- W3135178051 hasRelatedWork W4299126414 @default.
- W3135178051 hasRelatedWork W4299794286 @default.
- W3135178051 isParatext "false" @default.
- W3135178051 isRetracted "false" @default.
- W3135178051 magId "3135178051" @default.
- W3135178051 workType "article" @default.