Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135193306> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3135193306 endingPage "19" @default.
- W3135193306 startingPage "IA" @default.
- W3135193306 abstract "Abstract Molecular diagnostics of cancer has undergone a revolution driven by development of high throughput molecular techniques. It is increasingly recognized that malignant tumors previously considered a single entity are in fact composed of multiple different entities that vary in their molecular genetics, underlying biology and most importantly clinical outcome. Integration of omic- and clinical data into practical classification schemes requires novel machine learning approaches to manage big data in a clinically reasonable turnaround time. Accurate molecular classification will make future clinical trials more informative and lead to development of novel therapeutic strategies. While highly informative, advanced molecular testing is expensive and not widely available. We have developed novel methods to predict mutations directly from histopathological slides using artificial intelligence (AI) and image analysis. Mutations in various genes including EGFR, STK11, and BRAF can be predicted with high accuracy by the analysis of the H&E slide image, which is a standard stain in pathology laboratories across the world. Mutational prediction by AI provides a rapid low-cost method to screen patients for potentially targetable mutations in cancer. Cloud based AI mutational predictors could also bring molecular diagnostics to remote or medically underserved areas. Citation Format: Matija Snuderl. Machine learning and AI in molecular pathology diagnostics and clinical management of cancer [abstract]. In: Proceedings of the AACR Virtual Special Conference on Artificial Intelligence, Diagnosis, and Imaging; 2021 Jan 13-14. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(5_Suppl):Abstract nr IA-19." @default.
- W3135193306 created "2021-03-15" @default.
- W3135193306 creator A5078452073 @default.
- W3135193306 date "2021-03-01" @default.
- W3135193306 modified "2023-09-27" @default.
- W3135193306 title "Abstract IA-19: Machine learning and AI in molecular pathology diagnostics and clinical management of cancer" @default.
- W3135193306 doi "https://doi.org/10.1158/1557-3265.adi21-ia-19" @default.
- W3135193306 hasPublicationYear "2021" @default.
- W3135193306 type Work @default.
- W3135193306 sameAs 3135193306 @default.
- W3135193306 citedByCount "1" @default.
- W3135193306 countsByYear W31351933062022 @default.
- W3135193306 crossrefType "journal-article" @default.
- W3135193306 hasAuthorship W3135193306A5078452073 @default.
- W3135193306 hasConcept C104317684 @default.
- W3135193306 hasConcept C119857082 @default.
- W3135193306 hasConcept C121608353 @default.
- W3135193306 hasConcept C126322002 @default.
- W3135193306 hasConcept C142724271 @default.
- W3135193306 hasConcept C154945302 @default.
- W3135193306 hasConcept C179786068 @default.
- W3135193306 hasConcept C19527891 @default.
- W3135193306 hasConcept C2777983448 @default.
- W3135193306 hasConcept C2781187634 @default.
- W3135193306 hasConcept C41008148 @default.
- W3135193306 hasConcept C526805850 @default.
- W3135193306 hasConcept C55493867 @default.
- W3135193306 hasConcept C60644358 @default.
- W3135193306 hasConcept C70721500 @default.
- W3135193306 hasConcept C71924100 @default.
- W3135193306 hasConcept C74092355 @default.
- W3135193306 hasConcept C86803240 @default.
- W3135193306 hasConceptScore W3135193306C104317684 @default.
- W3135193306 hasConceptScore W3135193306C119857082 @default.
- W3135193306 hasConceptScore W3135193306C121608353 @default.
- W3135193306 hasConceptScore W3135193306C126322002 @default.
- W3135193306 hasConceptScore W3135193306C142724271 @default.
- W3135193306 hasConceptScore W3135193306C154945302 @default.
- W3135193306 hasConceptScore W3135193306C179786068 @default.
- W3135193306 hasConceptScore W3135193306C19527891 @default.
- W3135193306 hasConceptScore W3135193306C2777983448 @default.
- W3135193306 hasConceptScore W3135193306C2781187634 @default.
- W3135193306 hasConceptScore W3135193306C41008148 @default.
- W3135193306 hasConceptScore W3135193306C526805850 @default.
- W3135193306 hasConceptScore W3135193306C55493867 @default.
- W3135193306 hasConceptScore W3135193306C60644358 @default.
- W3135193306 hasConceptScore W3135193306C70721500 @default.
- W3135193306 hasConceptScore W3135193306C71924100 @default.
- W3135193306 hasConceptScore W3135193306C74092355 @default.
- W3135193306 hasConceptScore W3135193306C86803240 @default.
- W3135193306 hasIssue "5_Supplement" @default.
- W3135193306 hasLocation W31351933061 @default.
- W3135193306 hasOpenAccess W3135193306 @default.
- W3135193306 hasPrimaryLocation W31351933061 @default.
- W3135193306 hasRelatedWork W1545416436 @default.
- W3135193306 hasRelatedWork W1971523852 @default.
- W3135193306 hasRelatedWork W2043599501 @default.
- W3135193306 hasRelatedWork W2048309035 @default.
- W3135193306 hasRelatedWork W2145775872 @default.
- W3135193306 hasRelatedWork W2912110029 @default.
- W3135193306 hasRelatedWork W3135193306 @default.
- W3135193306 hasRelatedWork W3199997646 @default.
- W3135193306 hasRelatedWork W4211080546 @default.
- W3135193306 hasRelatedWork W4309938212 @default.
- W3135193306 hasVolume "27" @default.
- W3135193306 isParatext "false" @default.
- W3135193306 isRetracted "false" @default.
- W3135193306 magId "3135193306" @default.
- W3135193306 workType "article" @default.