Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135213803> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3135213803 endingPage "09" @default.
- W3135213803 startingPage "IA" @default.
- W3135213803 abstract "Abstract Cancer cells are multi-scale structures with modular organization across at least four orders of magnitude. Two central approaches for mapping this structure – protein fluorescent imaging and protein interaction – each generate extensive datasets but of distinct qualities and resolutions that are typically treated separately. Here, I will describe ongoing efforts to reconcile the large-scale data emerging from protein imaging and protein affinity purification interaction screens to create unified maps of cancer cells. The core concept is to use machine learning to compute a suitable embedding for each dataset, then to use these data embeddings to produce a general measure of protein distance calibrated against cellular components of known size. The evolving map, called the Multi-Scale Integrated Cell (MuSIC 1.0), currently resolves 69 subcellular systems of which approximately half are undocumented. Based on these findings we have performed 134 additional affinity purifications, validating close subunit associations for the majority of systems. I will also discuss how these cell maps can be used to identify protein complexes, and larger-scale systems such as organelles, that are under significant selective pressure for somatic mutations in different tumor types. In many of these cases, the mutation burden of the complex is far more substantial than the mutation frequency of any of the individual genes that encode it. By integration across scales, MuSIC substantially increases the mapping resolution obtained from imaging while giving protein interactions a spatial dimension, paving the way to incorporate many molecular data types in proteome-wide maps of cells. This work is a collaboration between the Cancer Cell Mapping Initiative (CCMI), the Human Protein Atlas (HPA), and the BioPlex Resource. Citation Format: Trey Ideker. Mapping cell structure across scales by fusing protein images and interactions [abstract]. In: Proceedings of the AACR Virtual Special Conference on Artificial Intelligence, Diagnosis, and Imaging; 2021 Jan 13-14. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(5_Suppl):Abstract nr IA-09." @default.
- W3135213803 created "2021-03-15" @default.
- W3135213803 creator A5089373684 @default.
- W3135213803 date "2021-03-01" @default.
- W3135213803 modified "2023-09-29" @default.
- W3135213803 title "Abstract IA-09: Mapping cell structure across scales by fusing protein images and interactions" @default.
- W3135213803 doi "https://doi.org/10.1158/1557-3265.adi21-ia-09" @default.
- W3135213803 hasPublicationYear "2021" @default.
- W3135213803 type Work @default.
- W3135213803 sameAs 3135213803 @default.
- W3135213803 citedByCount "2" @default.
- W3135213803 countsByYear W31352138032023 @default.
- W3135213803 crossrefType "journal-article" @default.
- W3135213803 hasAuthorship W3135213803A5089373684 @default.
- W3135213803 hasConcept C101468663 @default.
- W3135213803 hasConcept C104317684 @default.
- W3135213803 hasConcept C104397665 @default.
- W3135213803 hasConcept C111919701 @default.
- W3135213803 hasConcept C11804247 @default.
- W3135213803 hasConcept C153180895 @default.
- W3135213803 hasConcept C154945302 @default.
- W3135213803 hasConcept C205649164 @default.
- W3135213803 hasConcept C2778755073 @default.
- W3135213803 hasConcept C41008148 @default.
- W3135213803 hasConcept C41608201 @default.
- W3135213803 hasConcept C54355233 @default.
- W3135213803 hasConcept C58640448 @default.
- W3135213803 hasConcept C60644358 @default.
- W3135213803 hasConcept C66746571 @default.
- W3135213803 hasConcept C70721500 @default.
- W3135213803 hasConcept C86803240 @default.
- W3135213803 hasConceptScore W3135213803C101468663 @default.
- W3135213803 hasConceptScore W3135213803C104317684 @default.
- W3135213803 hasConceptScore W3135213803C104397665 @default.
- W3135213803 hasConceptScore W3135213803C111919701 @default.
- W3135213803 hasConceptScore W3135213803C11804247 @default.
- W3135213803 hasConceptScore W3135213803C153180895 @default.
- W3135213803 hasConceptScore W3135213803C154945302 @default.
- W3135213803 hasConceptScore W3135213803C205649164 @default.
- W3135213803 hasConceptScore W3135213803C2778755073 @default.
- W3135213803 hasConceptScore W3135213803C41008148 @default.
- W3135213803 hasConceptScore W3135213803C41608201 @default.
- W3135213803 hasConceptScore W3135213803C54355233 @default.
- W3135213803 hasConceptScore W3135213803C58640448 @default.
- W3135213803 hasConceptScore W3135213803C60644358 @default.
- W3135213803 hasConceptScore W3135213803C66746571 @default.
- W3135213803 hasConceptScore W3135213803C70721500 @default.
- W3135213803 hasConceptScore W3135213803C86803240 @default.
- W3135213803 hasIssue "5_Supplement" @default.
- W3135213803 hasLocation W31352138031 @default.
- W3135213803 hasOpenAccess W3135213803 @default.
- W3135213803 hasPrimaryLocation W31352138031 @default.
- W3135213803 hasRelatedWork W1978985034 @default.
- W3135213803 hasRelatedWork W2015630430 @default.
- W3135213803 hasRelatedWork W2144641302 @default.
- W3135213803 hasRelatedWork W2146108849 @default.
- W3135213803 hasRelatedWork W2160523217 @default.
- W3135213803 hasRelatedWork W2341018731 @default.
- W3135213803 hasRelatedWork W2537993442 @default.
- W3135213803 hasRelatedWork W2612255818 @default.
- W3135213803 hasRelatedWork W2905846897 @default.
- W3135213803 hasRelatedWork W3190476002 @default.
- W3135213803 hasVolume "27" @default.
- W3135213803 isParatext "false" @default.
- W3135213803 isRetracted "false" @default.
- W3135213803 magId "3135213803" @default.
- W3135213803 workType "article" @default.