Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135260801> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3135260801 endingPage "1134" @default.
- W3135260801 startingPage "1133" @default.
- W3135260801 abstract "The de novo domestication has the potential to rapidly capitalize on desirable traits of wild plants. In this issue of Cell, Yu et al. report a route of de novo domestication of an allotetraploid rice, heralding the creation of a novel staple food crop to support global food security. The de novo domestication has the potential to rapidly capitalize on desirable traits of wild plants. In this issue of Cell, Yu et al. report a route of de novo domestication of an allotetraploid rice, heralding the creation of a novel staple food crop to support global food security. Domestication of crops is a major historical innovation that has enabled the development of large complex civilizations. Domesticated crops were selected for desirable traits related to plant productivity, quality, and adaptation to agricultural cultivation. Although the traditional method of domesticating wild plants is still an option toward the creation of new crops, the recent development of the CRISPR-Cas technology enables a rapid de novo domestication of wild plants. The de novo domestication has the potential to capitalize on desirable traits of wild plants, while it avoids the lengthy crossings and selections of naturally occurring genetic mutations required for traditional domestication (Figure 1). De novo domestication through genome editing has been demonstrated recently for the orphan Solanaceae crop “groundcherry” (Physalis pruinosa) (Lemmon et al., 2018Lemmon Z.H. Reem N.T. Dalrymple J. Soyk S. Swartwood K.E. Rodriguez-Leal D. Van Eck J. Lippman Z.B. Rapid improvement of domestication traits in an orphan crop by genome editing.Nat. Plants. 2018; 4: 766-770Crossref PubMed Scopus (176) Google Scholar) and wild tomato (Li et al., 2018Li T. Yang X. Yu Y. Si X. Zhai X. Zhang H. Dong W. Gao C. Xu C. Domestication of wild tomato is accelerated by genome editing.Nat. Biotechnol. 2018; 36: 1160-1163Crossref Scopus (198) Google Scholar; Zsögön et al., 2018Zsögön A. Čermák T. Naves E.R. Notini M.M. Edel K.H. Weinl S. Freschi L. Voytas D.F. Kudla J. Peres L.E.P. De novo domestication of wild tomato using genome editing.Nat. Biotechnol. 2018; 36: 1211-1216Crossref Scopus (262) Google Scholar). However, it is unclear whether de novo domestication could succeed in creating a newpotentially major cereal crop. In this issue of Cell, Yu et al., 2021Yu H. Lin T. Meng X. Du H. Zhang J. Liu G. Chen M. Jing Y. Kou L. Li X. et al.A route to de novo domestication of wild allotetraploid rice.Cell. 2021; 184 (this issue): 1156-1170.e14Abstract Full Text Full Text PDF PubMed Scopus (55) Google Scholar report a route of de novo domestication of an allotetraploid rice, Oryza alta. It represents the first de novo domestication of not only a wild cereal but also a polyploid plant. Many polyploid plants are known to have advantages in growth vigor and adaption to new environments in comparison with diploid plants. Indeed, O. alta has both a high productivity in biomass and a strong tolerance to stresses. This exciting work heralds the creation of a novel staple food crop to support the global food security and marks a new wave toward the rapid domestication of crops with desired traits by using precision genome editing technologies. The de novo domestication of a plant requires that the plant has a well-sequenced genome and is amenable to genetic transformation. Yu et al., 2021Yu H. Lin T. Meng X. Du H. Zhang J. Liu G. Chen M. Jing Y. Kou L. Li X. et al.A route to de novo domestication of wild allotetraploid rice.Cell. 2021; 184 (this issue): 1156-1170.e14Abstract Full Text Full Text PDF PubMed Scopus (55) Google Scholar sequenced and assembled the O. alta genome, which is not a trivial task due to its polyploid nature. Genetic transformation is not trivial either, considering that efficient transformation protocols are available for only a limited number of plant species thus far. Even for rice, one of the most studied crop species, efficient transformation protocols have been developed only for some Oryza sativa cultivars, mainly the O. sativa japonica group. In this study, the authors selected an accession with high ability of both callus induction and regeneration from a panel of wild rice accessions. This selection is important because the ability to induce callus and regenerate plantlet is usually a bottleneck to establish any genetic transformation system for a plant. In the work by Yu et al., 2021Yu H. Lin T. Meng X. Du H. Zhang J. Liu G. Chen M. Jing Y. Kou L. Li X. et al.A route to de novo domestication of wild allotetraploid rice.Cell. 2021; 184 (this issue): 1156-1170.e14Abstract Full Text Full Text PDF PubMed Scopus (55) Google Scholar, a transformation efficiency of about 80% and a regeneration efficiency of about 40% were attained for O. alta. During crop domestication, many domestication traits are selected, which typically include decreased seed shattering, loss of seed dormancy, large seed or fruit size, increased apical dominance, and more determinant growth (Chen et al., 2019aChen E. Huang X. Tian Z. Wing R.A. Han B. The genomics of Oryza species provides insights into rice domestication and heterosis.Annu. Rev. Plant Biol. 2019; 70: 639-665Crossref PubMed Scopus (40) Google Scholar). The genes and allelic variations underlying many of these traits have been elucidated in the last several decades. In this study, the authors identified homologs of the genes controlling these traits from the O. alta genome and edited them with CRISPR-Cas9 tools to generate the desirable traits. The editing of OaSD1-CC and OaSD1-DD, the homologs of the gene sd1 (Sasaki et al., 2002Sasaki A. Ashikari M. Ueguchi-Tanaka M. Itoh H. Nishimura A. Swapan D. Ishiyama K. Saito T. Kobayashi M. Khush G.S. et al.Green revolution: a mutant gibberellin-synthesis gene in rice.Nature. 2002; 416: 701-702Crossref PubMed Scopus (794) Google Scholar), led to shortened culm. The grain length was similarly manipulated. The authors went further to show that a base editor and multiplex CRISPR-Cas9 editing tool could be used effectively to generate other desired phenotypes, such as altered plant architecture and heading dates. Even with these several changes in domestication and improvement traits, many challenges remain to establish this edited O. alta as a staple food crop. The heritability of these edited traits still needs to be demonstrated; it also needs to be examined whether the edited new traits could coexist with the original attributes of O. alta, e.g., high biomass productivity, high disease, and stress resistance. Conventional breeding is still needed to develop the edited O. alta into a staple crop that have high yield, high quality, and high resistance to stress and disease. During this process, marker-assisted selection can help to avoid losing the edited alleles or genomic variations, and speed breeding techniques can be used to shorten the breeding process (Watson et al., 2018Watson A. Ghosh S. Williams M.J. Cuddy W.S. Simmonds J. Rey M.D. Asyraf Md Hatta M. Hinchliffe A. Steed A. Reynolds D. et al.Speed breeding is a powerful tool to accelerate crop research and breeding.Nat. Plants. 2018; 4: 23-29Crossref PubMed Scopus (317) Google Scholar). Although there is still a long way ahead, de novo domestication, as illustrated by this and recent works (Lemmon et al., 2018Lemmon Z.H. Reem N.T. Dalrymple J. Soyk S. Swartwood K.E. Rodriguez-Leal D. Van Eck J. Lippman Z.B. Rapid improvement of domestication traits in an orphan crop by genome editing.Nat. Plants. 2018; 4: 766-770Crossref PubMed Scopus (176) Google Scholar; Li et al., 2018Li T. Yang X. Yu Y. Si X. Zhai X. Zhang H. Dong W. Gao C. Xu C. Domestication of wild tomato is accelerated by genome editing.Nat. Biotechnol. 2018; 36: 1160-1163Crossref Scopus (198) Google Scholar; Yu et al., 2021Yu H. Lin T. Meng X. Du H. Zhang J. Liu G. Chen M. Jing Y. Kou L. Li X. et al.A route to de novo domestication of wild allotetraploid rice.Cell. 2021; 184 (this issue): 1156-1170.e14Abstract Full Text Full Text PDF PubMed Scopus (55) Google Scholar; Zsögön et al., 2018Zsögön A. Čermák T. Naves E.R. Notini M.M. Edel K.H. Weinl S. Freschi L. Voytas D.F. Kudla J. Peres L.E.P. De novo domestication of wild tomato using genome editing.Nat. Biotechnol. 2018; 36: 1211-1216Crossref Scopus (262) Google Scholar), represents a paradigm shift in exploiting the natural genetic diversity of plants through incorporating domestication- and improvement-related traits into wild plants with special traits via genome editing. This is in contrast with the predominant approach of utilizing natural genetic diversity through incorporating preferable traits such as high grain nutritional value and preferred architectural features into existing crops through hybridization or genomic editing (Figure 1). It is worth emphasizing here that de novo domestication also provides a timely option to meet many of our emergent breeding goals, such as developing energy crops with high biomass productivity instead of high grain yield, carbon-storage crops capable of allocating more biomass belowground, and crops suitable for vertical farming (Figure 1). It is foreseeable that the recent advances in CRISPR-Cas technologies in plants, e.g., base editing, prime editing, and gene targeting (Chen et al., 2019bChen K. Wang Y. Zhang R. Zhang H. Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture.Annu. Rev. Plant Biol. 2019; 70: 667-697Crossref PubMed Scopus (393) Google Scholar; Lu et al., 2020Lu Y. Tian Y. Shen R. Yao Q. Wang M. Chen M. Dong J. Zhang T. Li F. Lei M. Zhu J.K. Targeted, efficient sequence insertion and replacement in rice.Nat. Biotechnol. 2020; 38: 1402-1407Crossref PubMed Scopus (38) Google Scholar), coupled with new genetic transformation techniques (Maher et al., 2020Maher M.F. Nasti R.A. Vollbrecht M. Starker C.G. Clark M.D. Voytas D.F. Plant gene editing through de novo induction of meristems.Nat. Biotechnol. 2020; 38: 84-89Crossref PubMed Scopus (121) Google Scholar), will usher an exciting wave of using de novo domestication of wild plants to create crops tailored to meet the diverse demands of humans. The authors declare no competing interests. A route to de novo domestication of wild allotetraploid riceYu et al.CellFebruary 3, 2021In BriefLi and colleagues developed a breeding route to de novo domestication of wild allotetraploid rice that provides a rational strategy for creating novel crops and generated a series of allotetraploid rice lines edited in domestication-related and agronomically important genes. Full-Text PDF Open Archive" @default.
- W3135260801 created "2021-03-15" @default.
- W3135260801 creator A5006106050 @default.
- W3135260801 creator A5049293054 @default.
- W3135260801 date "2021-03-01" @default.
- W3135260801 modified "2023-10-16" @default.
- W3135260801 title "Precision genome editing heralds rapid de novo domestication for new crops" @default.
- W3135260801 cites W2039973307 @default.
- W3135260801 cites W2727409292 @default.
- W3135260801 cites W2892968638 @default.
- W3135260801 cites W2893455966 @default.
- W3135260801 cites W2894252291 @default.
- W3135260801 cites W2918418208 @default.
- W3135260801 cites W2943785099 @default.
- W3135260801 cites W2995711654 @default.
- W3135260801 cites W3039067516 @default.
- W3135260801 cites W3126657350 @default.
- W3135260801 doi "https://doi.org/10.1016/j.cell.2021.02.004" @default.
- W3135260801 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33667365" @default.
- W3135260801 hasPublicationYear "2021" @default.
- W3135260801 type Work @default.
- W3135260801 sameAs 3135260801 @default.
- W3135260801 citedByCount "13" @default.
- W3135260801 countsByYear W31352608012021 @default.
- W3135260801 countsByYear W31352608012022 @default.
- W3135260801 countsByYear W31352608012023 @default.
- W3135260801 crossrefType "journal-article" @default.
- W3135260801 hasAuthorship W3135260801A5006106050 @default.
- W3135260801 hasAuthorship W3135260801A5049293054 @default.
- W3135260801 hasBestOaLocation W31352608011 @default.
- W3135260801 hasConcept C104317684 @default.
- W3135260801 hasConcept C134387633 @default.
- W3135260801 hasConcept C141231307 @default.
- W3135260801 hasConcept C144501496 @default.
- W3135260801 hasConcept C150903083 @default.
- W3135260801 hasConcept C54355233 @default.
- W3135260801 hasConcept C70721500 @default.
- W3135260801 hasConcept C78458016 @default.
- W3135260801 hasConcept C86803240 @default.
- W3135260801 hasConceptScore W3135260801C104317684 @default.
- W3135260801 hasConceptScore W3135260801C134387633 @default.
- W3135260801 hasConceptScore W3135260801C141231307 @default.
- W3135260801 hasConceptScore W3135260801C144501496 @default.
- W3135260801 hasConceptScore W3135260801C150903083 @default.
- W3135260801 hasConceptScore W3135260801C54355233 @default.
- W3135260801 hasConceptScore W3135260801C70721500 @default.
- W3135260801 hasConceptScore W3135260801C78458016 @default.
- W3135260801 hasConceptScore W3135260801C86803240 @default.
- W3135260801 hasIssue "5" @default.
- W3135260801 hasLocation W31352608011 @default.
- W3135260801 hasOpenAccess W3135260801 @default.
- W3135260801 hasPrimaryLocation W31352608011 @default.
- W3135260801 hasRelatedWork W1603543036 @default.
- W3135260801 hasRelatedWork W2069184423 @default.
- W3135260801 hasRelatedWork W2078815200 @default.
- W3135260801 hasRelatedWork W2102488404 @default.
- W3135260801 hasRelatedWork W2131211314 @default.
- W3135260801 hasRelatedWork W2893455966 @default.
- W3135260801 hasRelatedWork W3133490491 @default.
- W3135260801 hasRelatedWork W4285076939 @default.
- W3135260801 hasRelatedWork W4313640246 @default.
- W3135260801 hasRelatedWork W2187207551 @default.
- W3135260801 hasVolume "184" @default.
- W3135260801 isParatext "false" @default.
- W3135260801 isRetracted "false" @default.
- W3135260801 magId "3135260801" @default.
- W3135260801 workType "article" @default.