Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135277383> ?p ?o ?g. }
- W3135277383 abstract "Abstract Background The purpose of this study was to develop a voxel-wise clustering method of multiparametric magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[ 18 F]-fluoro-L-phenylalanine (FDOPA) positron emission tomography (PET) images using an unsupervised, two-level clustering approach followed by support vector machine in order to classify the isocitrate dehydrogenase (IDH) status of gliomas. Methods Sixty-two treatment-naïve glioma patients who underwent FDOPA PET and MRI were retrospectively included. Contrast enhanced T1-weighted images, T2-weighted images, fluid-attenuated inversion recovery images, apparent diffusion coefficient maps, and relative cerebral blood volume maps, and FDOPA PET images were used for voxel-wise feature extraction. An unsupervised two-level clustering approach, including a self-organizing map followed by the K-means algorithm was used, and each class label was applied to the original images. The logarithmic ratio of labels in each class within tumor regions was applied to a support vector machine to differentiate IDH mutation status. The area under the curve (AUC) of receiver operating characteristic curves, accuracy, and F1-socore were calculated and used as metrics for performance. Results The associations of multiparametric imaging values in each cluster were successfully visualized. Multiparametric images with 16-class clustering revealed the highest classification performance to differentiate IDH status with the AUC, accuracy, and F1-score of 0.81, 0.76, and 0.76, respectively. Conclusions Machine learning using an unsupervised two-level clustering approach followed by a support vector machine classified the IDH mutation status of gliomas, and visualized voxel-wise features from multiparametric MRI and FDOPA PET images. Unsupervised clustered features may improve the understanding of prioritizing multiparametric imaging for classifying IDH status." @default.
- W3135277383 created "2021-03-15" @default.
- W3135277383 creator A5002744472 @default.
- W3135277383 creator A5013892365 @default.
- W3135277383 creator A5017671349 @default.
- W3135277383 creator A5020801906 @default.
- W3135277383 creator A5025351354 @default.
- W3135277383 creator A5038569402 @default.
- W3135277383 creator A5046758575 @default.
- W3135277383 creator A5053968188 @default.
- W3135277383 creator A5063511816 @default.
- W3135277383 creator A5067103416 @default.
- W3135277383 creator A5079316205 @default.
- W3135277383 creator A5084168615 @default.
- W3135277383 date "2021-03-10" @default.
- W3135277383 modified "2023-10-11" @default.
- W3135277383 title "Differentiating IDH status in human gliomas using machine learning and multiparametric MR/PET" @default.
- W3135277383 cites W2014535287 @default.
- W3135277383 cites W2022893964 @default.
- W3135277383 cites W2087954383 @default.
- W3135277383 cites W2089221057 @default.
- W3135277383 cites W2125403904 @default.
- W3135277383 cites W2127854932 @default.
- W3135277383 cites W2140704845 @default.
- W3135277383 cites W2160382843 @default.
- W3135277383 cites W2301275595 @default.
- W3135277383 cites W2366536035 @default.
- W3135277383 cites W2460918282 @default.
- W3135277383 cites W2493391186 @default.
- W3135277383 cites W2613777097 @default.
- W3135277383 cites W2620310855 @default.
- W3135277383 cites W2793127683 @default.
- W3135277383 cites W2838883221 @default.
- W3135277383 cites W2889212189 @default.
- W3135277383 cites W2901372644 @default.
- W3135277383 cites W2909807434 @default.
- W3135277383 cites W2913625266 @default.
- W3135277383 cites W2945478270 @default.
- W3135277383 cites W2980127179 @default.
- W3135277383 cites W2993002800 @default.
- W3135277383 cites W3000939152 @default.
- W3135277383 cites W3014970872 @default.
- W3135277383 cites W3041994114 @default.
- W3135277383 cites W3085424462 @default.
- W3135277383 cites W571060166 @default.
- W3135277383 doi "https://doi.org/10.1186/s40644-021-00396-5" @default.
- W3135277383 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7944911" @default.
- W3135277383 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33691798" @default.
- W3135277383 hasPublicationYear "2021" @default.
- W3135277383 type Work @default.
- W3135277383 sameAs 3135277383 @default.
- W3135277383 citedByCount "10" @default.
- W3135277383 countsByYear W31352773832021 @default.
- W3135277383 countsByYear W31352773832022 @default.
- W3135277383 countsByYear W31352773832023 @default.
- W3135277383 crossrefType "journal-article" @default.
- W3135277383 hasAuthorship W3135277383A5002744472 @default.
- W3135277383 hasAuthorship W3135277383A5013892365 @default.
- W3135277383 hasAuthorship W3135277383A5017671349 @default.
- W3135277383 hasAuthorship W3135277383A5020801906 @default.
- W3135277383 hasAuthorship W3135277383A5025351354 @default.
- W3135277383 hasAuthorship W3135277383A5038569402 @default.
- W3135277383 hasAuthorship W3135277383A5046758575 @default.
- W3135277383 hasAuthorship W3135277383A5053968188 @default.
- W3135277383 hasAuthorship W3135277383A5063511816 @default.
- W3135277383 hasAuthorship W3135277383A5067103416 @default.
- W3135277383 hasAuthorship W3135277383A5079316205 @default.
- W3135277383 hasAuthorship W3135277383A5084168615 @default.
- W3135277383 hasBestOaLocation W31352773831 @default.
- W3135277383 hasConcept C119857082 @default.
- W3135277383 hasConcept C12267149 @default.
- W3135277383 hasConcept C126838900 @default.
- W3135277383 hasConcept C143409427 @default.
- W3135277383 hasConcept C153180895 @default.
- W3135277383 hasConcept C154945302 @default.
- W3135277383 hasConcept C2775842073 @default.
- W3135277383 hasConcept C2778227246 @default.
- W3135277383 hasConcept C2989005 @default.
- W3135277383 hasConcept C41008148 @default.
- W3135277383 hasConcept C502942594 @default.
- W3135277383 hasConcept C54170458 @default.
- W3135277383 hasConcept C58471807 @default.
- W3135277383 hasConcept C71924100 @default.
- W3135277383 hasConcept C73555534 @default.
- W3135277383 hasConceptScore W3135277383C119857082 @default.
- W3135277383 hasConceptScore W3135277383C12267149 @default.
- W3135277383 hasConceptScore W3135277383C126838900 @default.
- W3135277383 hasConceptScore W3135277383C143409427 @default.
- W3135277383 hasConceptScore W3135277383C153180895 @default.
- W3135277383 hasConceptScore W3135277383C154945302 @default.
- W3135277383 hasConceptScore W3135277383C2775842073 @default.
- W3135277383 hasConceptScore W3135277383C2778227246 @default.
- W3135277383 hasConceptScore W3135277383C2989005 @default.
- W3135277383 hasConceptScore W3135277383C41008148 @default.
- W3135277383 hasConceptScore W3135277383C502942594 @default.
- W3135277383 hasConceptScore W3135277383C54170458 @default.
- W3135277383 hasConceptScore W3135277383C58471807 @default.
- W3135277383 hasConceptScore W3135277383C71924100 @default.
- W3135277383 hasConceptScore W3135277383C73555534 @default.
- W3135277383 hasFunder F4320306095 @default.