Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135286738> ?p ?o ?g. }
- W3135286738 endingPage "2406" @default.
- W3135286738 startingPage "2406" @default.
- W3135286738 abstract "In 2013, China proposed the “Belt & Road Initiative” which aims to invest the “Belt & Road” countries so as to help them develop their infrastructure and economy. China consumes the largest part of fossil energy of the whole world, so it is China’s priority to consider its energy supplying security. Therefore, it becomes urgent for China to invest the “Belt & Road” countries’ energy facilities. There comes a question: how to evaluate the overseas energy investment risk? To answer this question, this paper proposes a deep learning method to assess such risk of the 50 “Belt & Road” countries. Specifically, this paper first proposes an indicator system in which 6 main factors are separated into 36 sub-factors. This paper makes use of hierarchical convolution neural networks (CNN) to encode the historical statistics. The hierarchical structure could help CNN handle the long historical statistics more effectively and efficiently. Afterward, this paper leverages the self-attention layer to calculate the weights of each sub-factor. It could be observed that the resource potential is the most important indicator, while “years of China’s diplomatic relations” is the most important sub-indicator. Finally, we use a conditional random field (CRF) layer and softmax layer to compute the assessment scores of each country. Based on the experimental results, this paper suggests Russia, United Arab Emirates (UAE), Malaysia, Saudi Arabia, Pakistan, Indonesia, and Kazakhstan to be China’s most reliable choices for energy investment." @default.
- W3135286738 created "2021-03-15" @default.
- W3135286738 creator A5037655433 @default.
- W3135286738 creator A5039798584 @default.
- W3135286738 creator A5055554760 @default.
- W3135286738 date "2021-03-09" @default.
- W3135286738 modified "2023-10-17" @default.
- W3135286738 title "Energy Investment Risk Assessment for Nations along China’s Belt & Road Initiative: A Deep Learning Method" @default.
- W3135286738 cites W1976191987 @default.
- W3135286738 cites W1984840225 @default.
- W3135286738 cites W1998162123 @default.
- W3135286738 cites W2030461917 @default.
- W3135286738 cites W2037629732 @default.
- W3135286738 cites W2062894130 @default.
- W3135286738 cites W2064240218 @default.
- W3135286738 cites W2064675550 @default.
- W3135286738 cites W2077502867 @default.
- W3135286738 cites W2085183918 @default.
- W3135286738 cites W2133379205 @default.
- W3135286738 cites W2194775991 @default.
- W3135286738 cites W2210186119 @default.
- W3135286738 cites W2489461026 @default.
- W3135286738 cites W2509262585 @default.
- W3135286738 cites W2519078630 @default.
- W3135286738 cites W2522195820 @default.
- W3135286738 cites W2586658677 @default.
- W3135286738 cites W2610227486 @default.
- W3135286738 cites W2751101461 @default.
- W3135286738 cites W2755140641 @default.
- W3135286738 cites W2756490971 @default.
- W3135286738 cites W2782264273 @default.
- W3135286738 cites W2788965242 @default.
- W3135286738 cites W2790172283 @default.
- W3135286738 cites W2791392401 @default.
- W3135286738 cites W2793432679 @default.
- W3135286738 cites W2802266650 @default.
- W3135286738 cites W2965831155 @default.
- W3135286738 cites W2981118123 @default.
- W3135286738 cites W3122173806 @default.
- W3135286738 cites W394255367 @default.
- W3135286738 cites W4242908697 @default.
- W3135286738 doi "https://doi.org/10.3390/app11052406" @default.
- W3135286738 hasPublicationYear "2021" @default.
- W3135286738 type Work @default.
- W3135286738 sameAs 3135286738 @default.
- W3135286738 citedByCount "1" @default.
- W3135286738 countsByYear W31352867382022 @default.
- W3135286738 crossrefType "journal-article" @default.
- W3135286738 hasAuthorship W3135286738A5037655433 @default.
- W3135286738 hasAuthorship W3135286738A5039798584 @default.
- W3135286738 hasAuthorship W3135286738A5055554760 @default.
- W3135286738 hasBestOaLocation W31352867381 @default.
- W3135286738 hasConcept C119599485 @default.
- W3135286738 hasConcept C127413603 @default.
- W3135286738 hasConcept C136264566 @default.
- W3135286738 hasConcept C144133560 @default.
- W3135286738 hasConcept C162324750 @default.
- W3135286738 hasConcept C166957645 @default.
- W3135286738 hasConcept C17744445 @default.
- W3135286738 hasConcept C188573790 @default.
- W3135286738 hasConcept C191935318 @default.
- W3135286738 hasConcept C199539241 @default.
- W3135286738 hasConcept C205649164 @default.
- W3135286738 hasConcept C206345919 @default.
- W3135286738 hasConcept C27548731 @default.
- W3135286738 hasConcept C2777172336 @default.
- W3135286738 hasConcept C31258907 @default.
- W3135286738 hasConcept C41008148 @default.
- W3135286738 hasConcept C94625758 @default.
- W3135286738 hasConceptScore W3135286738C119599485 @default.
- W3135286738 hasConceptScore W3135286738C127413603 @default.
- W3135286738 hasConceptScore W3135286738C136264566 @default.
- W3135286738 hasConceptScore W3135286738C144133560 @default.
- W3135286738 hasConceptScore W3135286738C162324750 @default.
- W3135286738 hasConceptScore W3135286738C166957645 @default.
- W3135286738 hasConceptScore W3135286738C17744445 @default.
- W3135286738 hasConceptScore W3135286738C188573790 @default.
- W3135286738 hasConceptScore W3135286738C191935318 @default.
- W3135286738 hasConceptScore W3135286738C199539241 @default.
- W3135286738 hasConceptScore W3135286738C205649164 @default.
- W3135286738 hasConceptScore W3135286738C206345919 @default.
- W3135286738 hasConceptScore W3135286738C27548731 @default.
- W3135286738 hasConceptScore W3135286738C2777172336 @default.
- W3135286738 hasConceptScore W3135286738C31258907 @default.
- W3135286738 hasConceptScore W3135286738C41008148 @default.
- W3135286738 hasConceptScore W3135286738C94625758 @default.
- W3135286738 hasIssue "5" @default.
- W3135286738 hasLocation W31352867381 @default.
- W3135286738 hasOpenAccess W3135286738 @default.
- W3135286738 hasPrimaryLocation W31352867381 @default.
- W3135286738 hasRelatedWork W2073081120 @default.
- W3135286738 hasRelatedWork W2352615683 @default.
- W3135286738 hasRelatedWork W2482891609 @default.
- W3135286738 hasRelatedWork W2748952813 @default.
- W3135286738 hasRelatedWork W2899084033 @default.
- W3135286738 hasRelatedWork W2944432343 @default.
- W3135286738 hasRelatedWork W3129475339 @default.
- W3135286738 hasRelatedWork W3160487133 @default.