Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135309452> ?p ?o ?g. }
- W3135309452 endingPage "49" @default.
- W3135309452 startingPage "49" @default.
- W3135309452 abstract "To build adequate predictive models, a substantial amount of data is desirable. However, when expanding to new or unexplored territories, this required level of information is rarely always available. To build such models, actuaries often have to: procure data from local providers, use limited unsuitable industry and public research, or rely on extrapolations from other better-known markets. Another common pathology when applying machine learning techniques in actuarial domains is the prevalence of imbalanced classes where risk events of interest, such as mortality and fraud, are under-represented in data. In this work, we show how an implicit model using the Generative Adversarial Network (GAN) can alleviate these problems through the generation of adequate quality data from very limited or highly imbalanced samples. We provide an introduction to GANs and how they are used to synthesize data that accurately enhance the data resolution of very infrequent events and improve model robustness. Overall, we show a significant superiority of GANs for boosting predictive models when compared to competing approaches on benchmark data sets. This work offers numerous of contributions to actuaries with applications to inter alia new sample creation, data augmentation, boosting predictive models, anomaly detection, and missing data imputation." @default.
- W3135309452 created "2021-03-15" @default.
- W3135309452 creator A5009060065 @default.
- W3135309452 creator A5054927150 @default.
- W3135309452 date "2021-03-08" @default.
- W3135309452 modified "2023-09-26" @default.
- W3135309452 title "Alleviating Class Imbalance in Actuarial Applications Using Generative Adversarial Networks" @default.
- W3135309452 cites W1498436455 @default.
- W3135309452 cites W1965555277 @default.
- W3135309452 cites W1966716734 @default.
- W3135309452 cites W1967127231 @default.
- W3135309452 cites W1977556410 @default.
- W3135309452 cites W1980287119 @default.
- W3135309452 cites W1993220166 @default.
- W3135309452 cites W2031668066 @default.
- W3135309452 cites W2042492924 @default.
- W3135309452 cites W2046878543 @default.
- W3135309452 cites W2048971218 @default.
- W3135309452 cites W2060061938 @default.
- W3135309452 cites W2076272581 @default.
- W3135309452 cites W2100495367 @default.
- W3135309452 cites W2116064496 @default.
- W3135309452 cites W2136922672 @default.
- W3135309452 cites W2143668817 @default.
- W3135309452 cites W2146950091 @default.
- W3135309452 cites W2148143831 @default.
- W3135309452 cites W2150559772 @default.
- W3135309452 cites W2155653793 @default.
- W3135309452 cites W2157825442 @default.
- W3135309452 cites W2164330572 @default.
- W3135309452 cites W2328111639 @default.
- W3135309452 cites W2755577605 @default.
- W3135309452 cites W2756182389 @default.
- W3135309452 cites W2765811365 @default.
- W3135309452 cites W2779931100 @default.
- W3135309452 cites W2796929742 @default.
- W3135309452 cites W2800788706 @default.
- W3135309452 cites W2806276686 @default.
- W3135309452 cites W2899901572 @default.
- W3135309452 cites W2961396908 @default.
- W3135309452 cites W2964159205 @default.
- W3135309452 cites W2998123743 @default.
- W3135309452 cites W3105747145 @default.
- W3135309452 cites W3125093329 @default.
- W3135309452 cites W4241727697 @default.
- W3135309452 cites W4294940931 @default.
- W3135309452 doi "https://doi.org/10.3390/risks9030049" @default.
- W3135309452 hasPublicationYear "2021" @default.
- W3135309452 type Work @default.
- W3135309452 sameAs 3135309452 @default.
- W3135309452 citedByCount "9" @default.
- W3135309452 countsByYear W31353094522021 @default.
- W3135309452 countsByYear W31353094522022 @default.
- W3135309452 countsByYear W31353094522023 @default.
- W3135309452 crossrefType "journal-article" @default.
- W3135309452 hasAuthorship W3135309452A5009060065 @default.
- W3135309452 hasAuthorship W3135309452A5054927150 @default.
- W3135309452 hasBestOaLocation W31353094521 @default.
- W3135309452 hasConcept C104317684 @default.
- W3135309452 hasConcept C108583219 @default.
- W3135309452 hasConcept C119857082 @default.
- W3135309452 hasConcept C124101348 @default.
- W3135309452 hasConcept C13280743 @default.
- W3135309452 hasConcept C154945302 @default.
- W3135309452 hasConcept C167966045 @default.
- W3135309452 hasConcept C185592680 @default.
- W3135309452 hasConcept C185798385 @default.
- W3135309452 hasConcept C205649164 @default.
- W3135309452 hasConcept C2988773926 @default.
- W3135309452 hasConcept C37736160 @default.
- W3135309452 hasConcept C39890363 @default.
- W3135309452 hasConcept C41008148 @default.
- W3135309452 hasConcept C46686674 @default.
- W3135309452 hasConcept C55493867 @default.
- W3135309452 hasConcept C58041806 @default.
- W3135309452 hasConcept C63479239 @default.
- W3135309452 hasConcept C739882 @default.
- W3135309452 hasConcept C79337645 @default.
- W3135309452 hasConcept C9357733 @default.
- W3135309452 hasConceptScore W3135309452C104317684 @default.
- W3135309452 hasConceptScore W3135309452C108583219 @default.
- W3135309452 hasConceptScore W3135309452C119857082 @default.
- W3135309452 hasConceptScore W3135309452C124101348 @default.
- W3135309452 hasConceptScore W3135309452C13280743 @default.
- W3135309452 hasConceptScore W3135309452C154945302 @default.
- W3135309452 hasConceptScore W3135309452C167966045 @default.
- W3135309452 hasConceptScore W3135309452C185592680 @default.
- W3135309452 hasConceptScore W3135309452C185798385 @default.
- W3135309452 hasConceptScore W3135309452C205649164 @default.
- W3135309452 hasConceptScore W3135309452C2988773926 @default.
- W3135309452 hasConceptScore W3135309452C37736160 @default.
- W3135309452 hasConceptScore W3135309452C39890363 @default.
- W3135309452 hasConceptScore W3135309452C41008148 @default.
- W3135309452 hasConceptScore W3135309452C46686674 @default.
- W3135309452 hasConceptScore W3135309452C55493867 @default.
- W3135309452 hasConceptScore W3135309452C58041806 @default.
- W3135309452 hasConceptScore W3135309452C63479239 @default.
- W3135309452 hasConceptScore W3135309452C739882 @default.