Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135328361> ?p ?o ?g. }
- W3135328361 abstract "The structures of metal–organic frameworks (MOFs) can be tuned to reproducibly create adsorption properties that enable the use of these materials in fixed-adsorption beds for non-thermal separations. However, with millions of possible MOF structures, the challenge is to find the MOF with the best adsorption properties to separate a given mixture. Thus, computational, rather than experimental, screening is necessary to identify promising MOF structures that merit further examination, a process traditionally done using molecular simulation. However, even molecular simulation can become intractable when screening an expansive MOF database for their separation properties at more than a few composition, temperature, and pressure combinations. Here, we illustrate progress toward an alternative computational framework that can efficiently identify the highest-performing MOFs for separating various gas mixtures at a variety of conditions and at a fraction of the computational cost of molecular simulation. This framework uses a “multipurpose” multilayer perceptron (MLP) model that can predict single component adsorption of various small adsorbates, which, upon coupling with ideal adsorbed solution theory (IAST), can predict binary adsorption for mixtures such as Xe/Kr, CH4/CH6, N2/CH4, and Ar/Kr at multiple compositions and pressures. For this MLP+IAST framework to work with sufficient accuracy, we found it critical for the MLP to make accurate predictions at low pressures (0.01–0.1 bar). After training a model with this capability, we found that MOFs in the 95th and 90th percentiles of separation performance determined from MLP+IAST calculations were 65% and 87%, respectively, the same as MOFs in the simulation-predicted 95th percentile across several mixtures at diverse conditions (on average). After validating our MLP+IAST framework, we used a clustering algorithm to identify “privileged” MOFs that are high performing for multiple separations at multiple conditions. As an example, we focused on MOFs that were high performing for the industrially relevant separations 80/20 Xe/Kr at 1 bar and 80/20 N2/CH4 at 5 bars. Finally, we used the MOF free energies (calculated on our entire database) to identify privileged MOFs that were also likely synthetically accessible, at least from a thermodynamic perspective." @default.
- W3135328361 created "2021-03-15" @default.
- W3135328361 creator A5050323795 @default.
- W3135328361 creator A5060214386 @default.
- W3135328361 date "2021-06-17" @default.
- W3135328361 modified "2023-10-16" @default.
- W3135328361 title "Deep learning combined with IAST to screen thermodynamically feasible MOFs for adsorption-based separation of multiple binary mixtures" @default.
- W3135328361 cites W1810766688 @default.
- W3135328361 cites W1984042072 @default.
- W3135328361 cites W1988375149 @default.
- W3135328361 cites W1994939463 @default.
- W3135328361 cites W1996651056 @default.
- W3135328361 cites W2003366790 @default.
- W3135328361 cites W2019465613 @default.
- W3135328361 cites W2020535926 @default.
- W3135328361 cites W2030971064 @default.
- W3135328361 cites W2039342899 @default.
- W3135328361 cites W2044028691 @default.
- W3135328361 cites W2053294416 @default.
- W3135328361 cites W2053700726 @default.
- W3135328361 cites W2058042244 @default.
- W3135328361 cites W2065683180 @default.
- W3135328361 cites W2079808548 @default.
- W3135328361 cites W2084266203 @default.
- W3135328361 cites W2085822586 @default.
- W3135328361 cites W2092616973 @default.
- W3135328361 cites W2098990352 @default.
- W3135328361 cites W2100716186 @default.
- W3135328361 cites W2108000066 @default.
- W3135328361 cites W2114753426 @default.
- W3135328361 cites W2131035223 @default.
- W3135328361 cites W2131082957 @default.
- W3135328361 cites W2138269457 @default.
- W3135328361 cites W2212542377 @default.
- W3135328361 cites W2320436993 @default.
- W3135328361 cites W2325980106 @default.
- W3135328361 cites W2339540635 @default.
- W3135328361 cites W2430656774 @default.
- W3135328361 cites W2466458832 @default.
- W3135328361 cites W2514123320 @default.
- W3135328361 cites W2519132385 @default.
- W3135328361 cites W2519634887 @default.
- W3135328361 cites W2593134243 @default.
- W3135328361 cites W2727106778 @default.
- W3135328361 cites W2734916297 @default.
- W3135328361 cites W2756398738 @default.
- W3135328361 cites W2779782886 @default.
- W3135328361 cites W2796155534 @default.
- W3135328361 cites W2808324832 @default.
- W3135328361 cites W2810029487 @default.
- W3135328361 cites W2902089868 @default.
- W3135328361 cites W2910175903 @default.
- W3135328361 cites W2912328619 @default.
- W3135328361 cites W2921132031 @default.
- W3135328361 cites W2925882525 @default.
- W3135328361 cites W2940949368 @default.
- W3135328361 cites W2947902713 @default.
- W3135328361 cites W2975867680 @default.
- W3135328361 cites W2992843173 @default.
- W3135328361 cites W2999006743 @default.
- W3135328361 cites W3002487152 @default.
- W3135328361 cites W3016327953 @default.
- W3135328361 cites W3040266406 @default.
- W3135328361 cites W3040628026 @default.
- W3135328361 cites W3041356756 @default.
- W3135328361 cites W3045316170 @default.
- W3135328361 cites W3086545698 @default.
- W3135328361 cites W3103455770 @default.
- W3135328361 cites W3111216450 @default.
- W3135328361 cites W3116337110 @default.
- W3135328361 cites W3124071250 @default.
- W3135328361 cites W4233372852 @default.
- W3135328361 cites W4249036775 @default.
- W3135328361 doi "https://doi.org/10.1063/5.0048736" @default.
- W3135328361 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34241255" @default.
- W3135328361 hasPublicationYear "2021" @default.
- W3135328361 type Work @default.
- W3135328361 sameAs 3135328361 @default.
- W3135328361 citedByCount "12" @default.
- W3135328361 countsByYear W31353283612021 @default.
- W3135328361 countsByYear W31353283612022 @default.
- W3135328361 countsByYear W31353283612023 @default.
- W3135328361 crossrefType "journal-article" @default.
- W3135328361 hasAuthorship W3135328361A5050323795 @default.
- W3135328361 hasAuthorship W3135328361A5060214386 @default.
- W3135328361 hasBestOaLocation W31353283611 @default.
- W3135328361 hasConcept C121332964 @default.
- W3135328361 hasConcept C147789679 @default.
- W3135328361 hasConcept C149629883 @default.
- W3135328361 hasConcept C150394285 @default.
- W3135328361 hasConcept C168167062 @default.
- W3135328361 hasConcept C179366358 @default.
- W3135328361 hasConcept C185592680 @default.
- W3135328361 hasConcept C192562407 @default.
- W3135328361 hasConcept C2780232233 @default.
- W3135328361 hasConcept C33923547 @default.
- W3135328361 hasConcept C41008148 @default.
- W3135328361 hasConcept C43617362 @default.
- W3135328361 hasConcept C48372109 @default.
- W3135328361 hasConcept C94375191 @default.